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Abstract

Many DNA methylome profiling methods cannot distinguish between 5-methylcytosine (5mC)

and 5-hydroxymethylcytosine (5hmC). Since 5mC typically acts as a repressive mark whereas 5hmC

is an intermediate form during active demethylation, the inability to separate their signals could

lead to incorrect interpretation of the data. Is the extra information contained in 5hmC signals

worth the additional experimental and computational costs? Here we combine whole-genome bisulfite

sequencing (WGBS) and oxidative WGBS (oxWGBS) data in various human tissues to investigate

the quantitative relationships between gene expression and the two forms of DNA methylation at

promoters, transcript bodies, and immediate downstream regions. We find that 5mC and 5hmC

signals correlate with gene expression in the same direction in most samples. Considering both types

of signals increases the accuracy of expression levels inferred from methylation data by a median of

18.2% as compared to having only WGBS data, showing that the two forms of methylation provide

complementary information about gene expression. Differential analysis between matched tumor

and normal pairs is particularly affected by the superposition of 5mC and 5hmC signals in WGBS

data, with at least 25-40% of the differentially methylated regions (DMRs) identified from 5mC

signals not detected from WGBS data. Our results also confirm a previous finding that methylation

signals at transcript bodies are more indicative of gene expression levels than promoter methylation

signals. Overall, our study provides data for evaluating the cost effectiveness of some experimental

and analysis options in the study of DNA methylation in normal and cancer samples.

Introduction

DNA methylation, the methylation of the carbon 5 atom of cytosines, usually occurs within the CpG

context in eukaryotes, and in some cell types also CpHpG and CpHpH contexts (Bird, 2002; Cokus et al.,

2008; Lister et al., 2009). It is involved in various biological processes, including embryonic development,

genomic imprinting, X Chromosome inactivation and genome stability maintenance (Lister et al., 2009).

Aberrant DNA methylation is associated with a variety of human diseases, including cancer (Robertson,

2005). Many types of cancer exhibit global hypomethylation as compared to normal tissues, while specific

loci could be hypermethylated (Ehrlich, 2009; Klutstein et al., 2016).

DNA methylation is tightly related to gene expression. Methylation of CpG islands within promoter

regions is associated with long-term gene silencing, while methylation in other regions are more dynamic

and tissue-specific (Jones, 2012). Sequences up to 2kb away from CpG islands, termed CpG island

shores, have been shown to display differential methylation in cancer that correlates with differential

gene expression (Irizarry et al., 2009). DNA methylation at regulatory elements other than promoters is
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less studied, but some recent work has started to demonstrate correlations between enhancer methylation

and gene silencing (Aran et al., 2013; Cao et al., 2017; Heyn et al., 2016). How gene body methylation is

related to gene expression has been more controversial, with a positive correlation between them observed

in some cell types but not in some others. Mechanistically, gene body methylation could be related to

repression of anti-sense transcript, efficiency of transcription elongation, usage of alternative promoter,

and RNA splicing (Choi et al., 2009; Lorincz et al., 2004; Maunakea et al., 2010; Rountree and Selker,

1997).

The ambiguous relationship between gene body methylation and gene expression could be partly due

to the presence of multiple forms of DNA methylation. 5-methylcytosine (5mC) can be converted by the

Ten-eleven translocation (Tet) family of proteins into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine

(5fC), and 5-carboxylcytosine (5caC) during active demethylation (Song et al., 2012). Unlike 5mC’s

characteristic enrichment at promoters of repressed genes, 5hmC has been found enriched at active

enhancers and around expressed genes, including gene body regions (Song et al., 2012; Yu et al., 2012).

If an experimental method cannot distinguish between 5mC and 5hmC (or the other two intermediate

forms), depending on their relative levels, methylation may appear to correlate with gene expression in

different ways for different genes with the same total methylation level.

Unfortunately, that is exactly the situation with many commonly used experimental methods. In

standard bisulfite conversion, which is used in whole-genome bisulfite sequencing (WGBS), reduced rep-

resentation bisulfite sequencing (RRBS) and Infinium 27k/450k/EPIC arrays, both 5mC and 5hmC are

unconverted. The resulting data can only tell whether a cytosine is methylated or not, but cannot tell

which form of methylation a cytosine takes (Jin et al., 2010). Some other methods such as MeDIP-seq and

MBDCap-seq could specifically detect 5mC (Jin et al., 2010), but they do not offer single-base resolution

and fail to provide information about the other forms of DNA methylation.

Recently, realizing the importance of 5hmC as a representative of the demethylation forms, a number

of methods have been proposed to detect it at single-base resolution (Li et al., 2016; Petterson et al.,

2014). Some of these methods are based on oxidative bisulfite sequencing (oxBS), which specifically

detects 5mC. Conceptually, by subtracting the methylation level detected by oxBS from that detected by

standard bisulfite sequencing (BS), the 5hmC level can also be deduced. In practice, this subtraction could

lead to negative values due to errors and stochastic factors in the experimental and analysis procedures,

which can be corrected computationally (Xu et al., 2016).

Currently, it is still not completely clear how 5mC and 5hmC at promoter, gene body and downstream

regions are related to gene expression, both separately and jointly. For instance, was the previously
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observed positive correlation between gene body methylation and gene expression purely due to 5hmC?

Do 5mC and 5hmC correlate with gene expression in opposite directions? If 5mC level is already known,

does 5hmC level provide extra information about gene expression, in normal and disease samples?

Besides, a lot of existing knowledge about DNA methylation is qualitative rather than quantitative.

For example, strong promoter 5mC is known to be associated with gene silencing, but the expected

amount of gene expression given a certain level of promoter methylation is usually not known. More

generally, if the 5mC and 5hmC levels at the promoter, gene body and downstream region are measured,

is it possible to tell the corresponding expression level of a gene? This question is particularly important

in epigenomic studies of diseases, in which a common question is whether an observed expression level

change of a gene can be attributed to the promoter methylation change alone or it is also affected by

methylation at other regions or even by other regulatory mechanisms.

In addition to the methylation level (“beta value”), defined as the proportion of methylated reads/signal

intensity at a CpG site among the total number of reads/signal intensity, it has been proposed that the

proportion of discordant reads (PDR), defined as the ratio of reads having discordant methylation status

at different CpGs, is a better indicator of gene expression level in chronic lymphocytic leukemia (Landau

et al., 2014). Is PDR generally more informative than beta values, especially when signals for 5mC and

5hmC are separately measured?

In this work, we use WGBS and oxWGBS data from normal liver and lung tissues and paired cancer

samples to study the quantitative relationships between gene expression and the two DNA methylation

forms, 5mC and 5hmC, quantified by both beta values and PDR, at different genic and regulatory elements

associated with the transcripts. In addition to answering the above conceptual questions, another goal of

this study is to provide practical guidelines as to whether both 5mC and 5hmC should be measured and

whether both beta values and PDR should be computed, neither of which is a common practice currently.

Results

5mC and 5hmC levels alone can partially infer transcript expression level

We obtained WGBS, oxWGBS and RNA sequencing (RNA-seq) data for 12 samples, including three

pairs of human normal liver tissues (Liver N1-N3) and matched tumors (Liver T1-T3), and three pairs of

human normal lung tissues (Lung N1-N3) and matched tumors (Lung T1-T3) (Li et al., 2016). Based on

these data, for each transcript, we computed the average raw WGBS and oxWGBS beta values, as well

as the inferred 5mC and 5hmC levels at its 16 associated upstream, transcript body and downstream
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regions in each sample (Figure 1A, Materials and Methods). Heat maps of the resulting data set reveal

some subtle correlations between these methylation features at the different associated regions and the

corresponding expression levels of the transcripts, with lower methylation at promoters and some body

features for transcripts with higher expression (Figure 1B, Supplemental Figure S1). A hierarchical

clustering of the samples based on all their methylation features shows two main clusters corresponding

to the two tissues of origin rather than cancer status (Figure 1C). A related observation has recently

been made based on gene expression data of 8,000 patients of 17 cancer types, that liver tumors are more

similar to normal liver tissues than to other types of tumors (Uhlen et al., 2017).

Before proceeding to other analyses, we first verified the computed 5mC and 5hmC beta values by

comparing them with another data set with the two types of methylation signals profiled by combining

standard reduced representation bisulfite sequencing (RRBS) and TET-assisted modification of RRBS

(TAB-RRBS)(Hlady et al., 2019). After removing source-specific biases, in the first two principal com-

ponents, the non-tumor samples from the two data sets were found to form clusters together, which

were largely separated from the tumor samples (Supplemental Figure S2). These results show that the

5mC and 5hmC levels for the same group of samples are comparable across the two studies, despite the

different biological samples and experimental protocols involved.

We also defined a similar data set with both beta values and PDR values computed. While beta values

can be computed from the raw WGBS and oxWGBS data as well as the processed 5mC and 5hmC levels,

PDR values can only be defined directly from sequencing reads, and were thus computed from raw WGBS

and oxWGBS data only. To ensure reliable calculations of PDR values, only regions with sufficient read

coverage were considered (Materials and Methods), leading to a smaller number of transcripts included

in this data set. Hereafter, we refer to this data set as the “small” set and the data set with only beta

value features as the “large” set. In the followings we first focus on the analyses of the large data set.

To investigate whether beta values in the regions associated with a transcript are indicative of its

expression level, we performed statistical modeling of transcript expression classes (zero-, low- and high-

expression), and evaluated the accuracy of the resulting models using a rigorous cross-validation procedure

(Materials and Methods).

Considering methylation levels in all 16 regions associated with each transcript, the constructed models

were fairly accurate in separating transcripts belonging to the different expression classes, with a median

AUROC (area under the receiver-operator characteristic) of around 0.7 (Figure 2A, “BS+oxBS+5mC+5hmC”).

This value is close to the AUROC reported in a previous study that involved only WGBS features (Lou

et al., 2014) despite a more rigorous evaluation procedure and a different way of quantifying methylation
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level used in the current study. We found that the modeling accuracy was not affected by the sequenc-

ing depth, in that transcripts with different read depths received similar AUROC values except when

the depth was less than 10 (Supplemental Figure S3), which involved only 0.25%-0.89% of transcripts

based on the WGBS and oxWGBS data. We also derived methylation features further away from each

transcript, covering 96% of CpG island shores, and found that the accuracy of the resulting models is

similar to the ones covering only the 16 regions with the difference of average AUROC for each sample

group not more than 0.006 (Supplemental Figure S4), suggesting that these 16 regions already capture a

substantial portion of information about gene expression.

Comparing the different expression classes, the DNA methylation features were more successful in

identifying transcripts with zero or high expression than those with an intermediate expression level

(Supplemental Figure S5).

To evaluate whether these results are sensitive to the transcript annotation set, we repeated the above

procedures considering only protein-coding transcripts and/or only the transcripts with experimental

evidence or manual curation (from GENCODE levels 1 and 2). The resulting AUROC values were

similar for all these settings (Supplemental Figure S6), suggesting that the models constructed were

general for both protein-coding and non-coding genes, and for transcripts at different confidence levels.

5mC and 5hmC provide complementary information about gene expression

We then investigated the relative importance of the DNA methylation features by constructing models

using only subsets of features. First, we compared methylation features derived from the four types

of methylation data considering all 16 associated regions (Figure 2A). Among the models involving

only features derived from a single type of data, the models with WGBS, oxWGBS or 5mC features

had similar AUROC values, all higher than models with 5hmC features. On the other hand, models

involving both 5mC and 5hmC features (“5mC+5hmC”) performed better than models involving ei-

ther 5mC or 5hmC features alone, most substantially for the normal liver samples, showing that these

two forms of DNA methylation provide complementary information about gene expression. Similarly,

combining both WGBS and oxWGBS features (“BS+oxBS”) slightly improved the modeling results as

compared to having only WGBS or only oxWGBS features. Finally, models involving all four types of

data (“BS+oxBS+5mC+5hmC”) had similar performance as models involving only the inferred 5mC

and 5hmC levels (“5mC+5hmC”), suggesting that these derived DNA methylation features successfully

captured the essential information about gene expression contained in the raw WGBS and oxWGBS data.

Overall, models involving all features had a median AUROC improvement of 0.7-7.2% for the different
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samples as compared to the models involving only WGBS features.

To evaluate whether these findings are specific to liver and lung tissues, we collected additional

genome-wide 5mC, 5hmC and gene expression data from 4 human kidney samples (Chen et al., 2016)

and 16 human placenta samples (Green et al., 2016). Based on the same strategy of modeling transcript

expression levels, we found that the models from different tissues had similar AUROC values (Supple-

mental Figure S7A-E) except when the data were produced by RRBS. The different tissue types also

exhibited the same trend that models involving 5mC features alone were more accurate than those in-

volving 5hmC features alone, while combining the two types of methylation features led to even more

accurate models (Supplemental Figure S7A-E). The genome-wide average 5hmC level was higher in liver

and lung samples than in kidney and placenta samples, but it did not correlate with the increment of

modeling accuracy due to 5hmC features (Supplemental Figure S7F). Instead, the increment was slightly

larger in normal samples than cancer samples (Supplemental Figure S7F).

Next, we compared models involving methylation features at the different regions associated with

each transcript (Figure 2B). Among the upstream, transcript body and downstream features, features

at the transcript body were most indicative of the expression class, followed by those at the upstream

regions. The higher accuracy of the transcript body models was partially, but not completely, due to the

effect of the first exon, in that including the first exon always led to better modeling accuracy (comparing

“Up+FirstEx” with “Up”, and comparing “Body” with “Body-FirstEx”), but models involving transcript

body features were consistently more accurate than those involving upstream features no matter first exon

was included or excluded in both sets (comparing “Body” with “Up+FirstEx”, and comparing “Body-

FirstEx” with “Up”). Integrating features in both transcript body and upstream regions (“Up+Body”)

or all three region types (“Up+Body+Down”) only improved the modeling accuracy slightly as compared

to the models involving transcript body features alone.

It is well-accepted that high 5mC level at promoters is an indicator of gene repression (Miranda

and Jones, 2007; Suzuki and Bird, 2008), while 5hmC has been shown to be associated with gene bod-

ies (Stroud et al., 2011). We checked whether these knowledge-driven features are redundant and whether

together they are sufficient for inferring gene expression level to the maximal accuracy. We found that

combining 5mC features at upstream regions and 5hmC features at transcript bodies indeed improved

modeling accuracy as compared to having either set of features alone, but their combination was still

not sufficient to reach the accuracy of models involving all types of methylation features at all associated

regions of the transcripts (Figure 2C), suggesting that methylation features other than promoter 5mC and

transcript body 5hmC levels also contribute substantially to the understanding of transcript expression
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levels.

To make sure that the above observations are not specific to our definition of expression classes, we

also constructed regression models to infer log expression levels of transcripts directly. The resulting

correlation values (Supplemental Figure S8) displayed trends highly similar to the AUROC values from

the classification models, thereby confirming the generality of the results. For example, combining 5mC

and 5hmC features led to better results than having either alone (Supplemental Figure S8A,B) and tran-

script body features could infer expression levels more accurately than upstream features (Supplemental

Figure S8C,D).

Comparing models involving only WGBS features with those involving all methylation features (Sup-

plemental Figure S8A, “BS” vs. “BS+oxBS+5mC+5hmC”), the median Pearson’s correlation (across

the 12 samples) between the predicted and actual log expression values increased from 0.21 to 0.25, which

is equivalent to a 18.2% improvement. Among the two tissue types, liver samples had a larger increment

of 26.4%.

Feature importance and the smallest set of features with maximal information

about gene expression

To systematically determine the most important methylation features for explaining expression variability,

we defined a feature importance score based on the frequency of each feature being selected as one of

the top features in a forward-searching procedure (Materials and Methods). When we grouped features

into upstream, transcript body and downstream feature blocks (Figure 2D), WGBS and 5hmC signals at

transcript bodies received the highest importance scores. This is particularly interesting because although

5hmC features alone could not infer expression levels accurately, they provided the best complementation

to the WGBS features while other individually strong features (such as 5mC-Body) appeared to provide

less extra information not already contained in WGBS features at transcript bodies. Among the upstream

features, as expected 5mC was selected as most important.

We then further studied the 16 individual regions (Supplemental Figure S9), and found that in addition

to first exon (“FirstEx”) and the upstream region closest to the TSS (“Up1”), which are important for

transcription factor binding and transcription initiation, some other features also consistently showed up

among the most important features, including the last exon (“LastEx”) and internal introns (“IntIn”).

These regions may affect transcription through other independent mechanisms such as transcriptional

elongation and splicing, and were therefore selected as the next most important features.
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Using the models involving all features as the best case, we investigated how the model accuracy

changed as we included each additional feature or feature block during the forward searching procedure.

In terms of feature blocks (Supplemental Figure S10), usually 3-4 blocks were sufficient to reach the

best-case performance, and these top blocks were predominantly transcript body features. In terms of

individual methylation features (Supplemental Figure S11), usually 10 or more features were necessary

to reach the best-case performance. Although the first 3-4 top features, mainly form transcript bodies,

provided the most rapid improvement of modeling accuracy, the remaining 6-8 features still provided

non-negligible improvements, and sometimes they also included upstream and downstream features.

The constructed models remain reasonably accurate when applied to other

samples

All the results described above were obtained by training and testing on distinct subsets of transcripts

from the same sample using a cross-validation procedure. This procedure was designed to avoid over-

fitting the training data, such that the models could capture the general relationships between DNA

methylation and gene expression rather than trends specific to the training sample only. To confirm this

generality, we applied models trained on a subset of transcripts from a sample to infer the expression class

of a different subset of transcripts in another sample. The results (Figure 3) reveal that except for normal

liver samples that appear to be more distinct from the other samples, our constructed models could infer

expression classes of transcripts in other samples as accurately as in the training sample, which can be

seen by having off-diagonal AUROC values in the result matrix not substantially lower than the diagonal

ones. Importantly, a large portion of these models did not exhibit tissue- or disease state-specificity, with

similar AUROC values no matter the testing sample had the same tissue type or disease state as the

training sample or not.

Relationship between transcript body methylation and expression

Whether DNA methylation at transcript body correlates positively or negatively with gene expression

has been controversial (Ball et al., 2009; Lister et al., 2009; Lou et al., 2014; Rauch et al., 2009). Besides

differences in measuring and quantifying methylation levels in the previous studies that could have led

to discrepancies in their results, it has not been clear whether the relative 5mC and 5hmC levels could

also be a key factor since many of these studies did not consider the two forms of DNA methylation

separately. From our data, we found that at regions closest to the TSS (Up1 and FirstEx), both 5mC and

9



5hmC features correlated negatively with gene expression, although the correlation was stronger for 5mC

(Supplemental Figure S12). This is consistent with a recent report that both types of DNA methylation

could repress gene expression by affecting transcription factor binding at the promoter (Kitsera et al.,

2017). Inside the transcript body, 5hmC tended to correlate more positively with gene expression than

5mC in normal liver samples, but the reverse is observed for some liver and lung tumor samples.

Although models involving both 5mC and 5hmC features were more accurate than those involving

either only 5mC or only 5hmC features, exactly how the two forms of DNA methylation complement

each other in indicating expression level is still unclear. For instance, expression level could be related

to either a linear or non-linear function of the two forms of DNA methylation. When we plotted these

three variables at the same time, considering the whole transcript body as a single region (Supplemental

Figure S13), we could not observe any obvious functional form that explains how 5mC and 5hmC jointly

indicate expression level, except that highly expressed transcripts usually did not have very high 5mC or

5hmC levels at their bodies. These results reiterate that transcript body methylation has more subtle

relationships with gene expression than promoter methylation.

Comparisons between beta value and PDR features

After exploring properties of 5mC and 5hmC levels using the large data set, we then switched to the small

data set to study PDR values (Supplemental Figure S14). Overall, the AUROC values were generally

lower than those obtained from the large data set (Figure 2), likely due to the much smaller number of

transcripts in the small data set that forbade reliable modeling. Nevertheless, this data set still allowed

us to explore the relative importance of beta value and PDR features. Comparing the models involving

these two types of features (Supplemental Figure S14A), models involving beta value features had higher

AUROC values no matter WGBS, oxWGBS or both types of data were used. Combining the two types of

features resulted in more accurate models in all cases. Compared with having beta value features alone,

incorporating PDR features led to 1.0-5.2%, 0.6-3.7% and 0.0-3.5% AUROC improvements across the

samples when WGBS, oxWGBS or both types of data were used, respectively. The same trends were also

obtained from the regression results (Supplemental Figure S15), with the median Pearson’s correlation

improved up to 9.5%, 9.8% and 4.8% by incorporating PDR features when WGBS, oxWGBS or both

types of data were used, respectively.

Since PDR values could only be computed from the raw WGBS and oxWGBS data, we checked

whether it would be beneficial to also incorporate beta value features of the derived 5mC and 5hmC levels.

The results (Supplemental Figure S14B) show that adding these features (“(BS+oxBS)Beta+PDR+(5mC+5hmC)Beta”)
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only led to a small increase of AUROC in normal liver samples as compared to not adding them

(“(BS+oxBS)Beta+PDR”), and did not lead to any clear improvements in other samples. These results

again show that it is sufficient to define beta value features using either the raw WGBS and oxWGBS

data alone or the processed 5mC and 5hmC data alone.

Necessity of integrating 5mC and 5hmC in differential analyses

The presence of both tumor and matched normal samples in our data enabled us to investigate the

necessity of measuring both 5mC and 5hmC in studying differential methylation in cancer. We first

checked whether differential expression class could be inferred by beta value features (Materials and

Methods). The results (Figure 4A) show that, as expected, transcripts with strong differential expression

were more easily identified than those with only weak differential expression. In general, the beta value

features were more successful in detecting differentially expressed transcripts in the liver sample pairs

than in the lung sample pairs (Figure 4A), which could be due to a more substantial reduction of

5hmC levels around transcripts from normal liver to liver cancer than in the case of lung (Li et al.,

2016). Modeling accuracy was also higher when the four classes contained transcripts with more distinct

differential expression profiles (Supplemental Figure S16A). Again, combining both 5mC and 5hmC data

led to the best modeling accuracy (Supplemental Figure S16B), and methylation levels at transcript

bodies were more useful than those at promoters or downstream regions in inferring the differential

expression classes (Supplemental Figure S16C).

In the above models, the methylation features in the individual samples were used to infer the differ-

ential expression class. Another common way to analyze cancer methylome and transcriptome data is to

determine DMRs among the tumor and normal samples and look for differentially expressed transcripts

potentially caused by them. To evaluate how this standard analysis procedure might be affected by the

mixture of 5mC and 5hmC levels in the data, we determined DMRs genome-wide using only BS data,

only oxBS data, only 5mC levels, or only 5hmC levels (Materials and Methods). When comparing the

overlap of these four sets of DMRs at different stringency thresholds, we found them to differ substantially

(Figure 4B). First, we noticed that almost no DMRs were identified based on 5hmC levels, indicating that

the 5hmC levels were not sufficiently different between the tumor and normal groups to be considered

statistically significant DMRs by the standard DMR calling method. Considering the other three types

of data, 5mC consistently gave the highest number of DMRs in both liver and lung samples, suggesting

that as compared to the mixture of 5mC and 5hmC signals in BS data, the inferred “clean” 5mC levels

were more capable of capturing differential methylation events. Comparing the DMRs identified from
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BS, oxBS and 5mC, if two DMRs were considered the same as long as their genomic locations had a little

bit overlap (minimum overlap ratio close to 0), more than 90% of the oxBS DMRs were also identified

from the 5mC data, while DMRs identified from standard BS data could only cover 60-75% of the DMRs

identified from oxBS data or 5mC levels. On the other hand, when two DMRs were considered the same

only if they had substantial overlaps (with a large overlap ratio), few DMRs identified from these different

types of data remained in common. These results show that standard DMR analysis is heavily affected

by the type of methylation data involved.

We have also used an additional method for calling DMRs (Korthauer et al., 2018) from BS and oxBS

data. The results (Supplemental Figure S16D-F) contain trends that are consistent with the first method

after removing an outlier sample.

Discussion

In this study, we have found that 5mC and 5hmC signals provide non-redundant information about gene

expression. The median Pearson’s correlation between the actual log expression levels and the expression

levels inferred from methylation data was increased by 18.2% by having separate 5mC and 5hmC signals

as compared to having only standard bisulfite sequencing data. Whether this amount of extra information

about expression variability is worth the extra cost of producing the additional experimental data (such

as oxidative bisulfite sequencing) is a practical decision to be made when designing methylome studies.

On the other hand, if the study goal is to identify the most significant differentially methylated regions

between tumor and normal samples and associate them with differential expression events, our results

suggest that it is necessary to have separate measurements of 5mC and 5hmC signals since the DMRs

identified from WGBS data could only cover 60-75% of the DMRs identified from “pure” 5mC signals.

The advantage of having separate measurements of 5mC and 5hmC signals as compared to having

5mC or WGBS signals alone was clearest for the normal liver samples. This is consistent with the higher

correlation between 5hmC and gene expression and lower correlation between 5mC and gene expression

of these samples as compared to liver cancer samples reported in Li et al. (2016). This difference could be

a combination of biological phenomena and technical biases in 5hmC quantification. More investigations

are needed to determine the major factor.

In the investigation of PDR features, we found that they were not more informative than beta values in

indicating transcript expression levels based on the tumor and normal samples we studied. One limitation

of this comparison is that PDR values could only be computed reliably when there were a reasonable
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number of CpG sites appearing on the same sequencing read and the whole region was covered by a

reasonable number of reads. These requirements made the number of transcripts qualified for inclusion

very small, since for many transcripts PDR values could not be computed in at least some of the 16

associated genomic regions. An additional difficulty of studying PDR values is that they can only be

computed from the raw reads but not from the derived 5mC and 5hmC levels, since the correlation

between different CpG sites on the same reads would be loss during the process. It would be useful to

further check the usefulness of PDR features in inferring expression levels using additional data sets.

Results in the current study also confirm our previous finding (Lou et al., 2014) that transcript body

methylation features are more indicative of gene expression level than promoter methylation features. The

highly consistent results from the two studies is remarkable because they involved very different analysis

details, including the way of quantifying methylation levels, the cross-validation procedures, the use of

gene or transcript as the basic unit, and whether regression of log expression levels is performed. Based on

these results, we strongly recommend that when DNA methylation data are used to study transcriptional

regulation, methylation signals in the gene body should be included in the analysis, especially the signals

at the first exon, last exon and internal introns.

In this study, we investigated methylation of each transcript based on its promoter, body and imme-

diate downstream regions. It would be interesting to extend the study to include enhancer and other

distal regulatory elements. Recently, a number of methods have been proposed for identifying target

genes of enhancers in a cell type-specific manner (Cao et al., 2017; Corradin et al., 2014; He et al., 2014;

Roy et al., 2015; Whalen et al., 2016). However, the accuracy of these methods for cell types without

genome contact data such as Hi-C or ChIA-PET is still not high enough for constructing models that

can infer expression reliably. The exploration of the general quantitative relationships between enhancer

methylation and gene expression levels will need to wait for the availability of more genome contact data

or more accurate enhancer-target identification methods.

It has been shown that 5hmC levels are highly variable among tissue types (Nestor et al., 2012).

Limited by data availability, we have only included a few tissue types each with only a small number of

samples in our study. Whether 5hmC levels are more indicative of transcript expression levels in other

tissue types and whether more DMRs can be identified based on 5hmC levels in other cancer types are

questions to be answered when more genome-wide 5mC and 5hmC measurements become available.
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Materials and Methods

Construction of the data sets

For the main data set used in this study, we downloaded raw sequencing read files (.sra) and alignment

files (.bam) of the WGBS, oxWGBS and RNA-seq data from Sequence Read Archive (SRA, Leinonen

et al. (2010)) (GSE70091, sub-series GSE70089 for RNA-seq alignment files and GSE70090 for WGBS and

oxWGBS raw read files) using the SRA toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/).

The original data set contained four normal-tumor pairs of liver, but since only three of them had the

corresponding RNA-seq data, we excluded this fourth pair from all our analyses. Following Li et al.

(2016), we aligned the WGBS and oxWGBS raw reads to the human reference genome hg19 using

BSmooth (Hansen et al., 2012). Read pairs having identical alignments of both mates were considered

potential duplicates due to PCR artifacts, and only one read pair was retained for each set of duplicate

read pairs.

For each CpG site, we computed the beta value of it as the number of reads supporting an unconverted

cytosine divided by the total number of reads covering the site, for both WGBS and oxWGBS data sets.

To ensure the reliability of the input data, following the data processing in Li et al. (2016), we excluded

reads with a mapping quality less than 20, bases on a read with a base quality less than 10, and bases

within the 10 5’-most positions of both mates of each read pair. To reduce effects of sampling errors,

CpG sites with fewer than 5 aligned reads were also excluded. We further computed 5mC and 5hmC

levels of each site using a maximum likelihood method (Xu et al., 2016).

For WGBS and oxWGBS data, we further computed the average methylation level of each associated

region defined for a transcript as
∑

i mi∑
i ni

, where i loops through all CpG sites in the region, mi is the

number of reads supporting that site i is mehtylated, and ni is the total number of reads covering

site i. 5mC and 5hmC levels of these regions were then determined by the corresponding WGBS and

oxWGBS levels. These associated regions included 16 regions overlapping or immediately next to the

transcript (Lou et al., 2014), namely five consecutive 400bp bins upstream of the transcription start site

(TSS) (Up1-Up5, with Up1 closest to the TSS), first exon (FirstEx), first intron (FirstIn), internal exons

(IntEx), internal introns (IntIn), last exon (LastEx), last intron (LastIn), and five consecutive 400bp

bins downstream of the transcription termination site (TTS) (Down1-Down5, with Down1 closest to the

TTS). By default, we included all annotated protein-coding and non-coding transcripts of levels 1, 2 and

3 in GENCODE (Harrow et al., 2012) version 19, while in some analyses we only considered a subset of

these transcripts to see how the results differed.
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In order to have all 16 regions defined, we always considered only transcripts with at least four exons,

since this is the minimum number of exons that the first intron, internal introns and last intron regions are

all distinct. To avoid unreliable methylation levels due to low read coverage, if the whole transcript body

region had fewer than 3 CpG sites each with at least 5 aligned reads in a sample, the whole transcript

was discarded from that sample.

In addition, for each region associated to a gene, we calculated its PDR value in each sample as the

ratio of reads having discordant methylation status. Specifically, we considered reads with an alignment

that overlapped the region, with reads having a mapping quality less than 20 or covering less than 3

CpG sites excluded. For each of the remaining reads, it was considered a concordant read if less than

10% or more than 90% of the CpG sites it covered had the same methylation status. The other reads

were considered discordant, and the number of them was used to compute the PDR value. To ensure the

robustness of the computed PDR values, transcripts with any one of the 16 associated regions having less

than 3 aligned reads were discarded. This filtering was the main reason that the resulting small data set

had a much smaller number of transcripts than the big data set, which only had beta values as features.

Since the calculations of PDR values required information of sequencing reads rather than individual

CpG sites, they could not be computed for the processed 5mC and 5hmC data sets, which did not have

read-level information anymore.

We also computed transcript expression levels, defined as fragments per kilobase per million mapped

reads (FPKM), using Cufflinks (Trapnell et al., 2010) version 2.2.1 using the -G option.

The additional data sets used were downloaded from Gene Expression Omnibus (GEO) (Barrett

et al., 2013) or SRA. Specifically, for the 4 kidney samples (Chen et al., 2016), the processed 5mC and

5hmC beta values and raw RNA-seq data were downloaded from GEO (GSE63183). For the 10 liver

samples (Hlady et al., 2019), the processed 5mC and 5hmC beta values and raw RNA-seq data were

downloaded from GEO (GSE112221). For the 16 placenta samples (Green et al., 2016), the processed

5mC and 5hmC beta values were downloaded from GEO (GSE71719) and the raw RNA-seq data were

downloaded from SRA (SRP068290). All RNA-seq data were aligned to the human reference genome

GRCh37/hg19 using TopHat v2.0.13 for computing transcript expression levels. We used GRCh37/hg19

rather than the latest GRCh38/hg38 reference because the processed 5mC and 5hmC beta values from

these studies were based on the GRCh37/hg19 reference. Since our study focused on the well-annotated

regions around genes and all analyses were performed based on aggregating data across genomic regions,

changing the reference to GRCh38/hg38 would not significantly affect our results and conclusions since

the two references mainly differ by single-nucleotide variants, alternate locus scaffolds, centromeres and
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mitochondrial DNA (Bhattacharyya et al., 2017; Schneider et al., 2017).

Statistical modeling of expression classes

In each sample, we defined a high-expression class of transcripts as those having an FPKM value of 1 or

more, a low-expression class of transcripts as those having an FPKM value larger than 10−10 but smaller

than 10−2, and a zero-expression class of transcripts as those having an FPKM value less than 10−100.

We modeled the expression class using either all or a subset of the methylation features. We chose

Random Forest models (Bagging with 50 random trees as the base classifiers) since they were previously

shown to perform well for modeling the quantitative roles of DNA methylation (Lou et al., 2014). All

expression classes were included in the same model.

We designed a cross-validation procedure for evaluating the performance of the models as follows. We

paired up short and long autosomes, namely Chromosome 1 with Chromosome 22, Chromosome 2 with

Chromosome 21, and so on, leading to 11 chromosome pairs. Each time one of the chromosome pairs

was left out for testing, while the other 10 pairs were used for training a model. The model was then

applied to the transcripts in the left-out chromosome pair, either from the same sample (within-sample

test) or from another sample (across-sample test). Finally, the predictions from the 11 left-out sets were

combined to compute the performance metric AUROC (area under the receiver-operator characteristics)

using an one-class-against-all strategy. This design of the cross-validation procedure avoids two types of

trivial memorization. First, in the within-sample test, if all transcripts were randomly distributed to the

training and testing sets instead, two transcripts from the same gene could be respectively assigned to the

training and testing sets, leading to a simple memorization of the training transcript’s expression level

when predicting the testing transcript’s expression level, since they would share very similar methylation

features. Second, in the between-sample test, if all transcripts from a sample was used to construct

the model instead, when applying the model to another sample, again the predictions could be simply

memorization of the expression levels of the same transcripts in the training sample, when the training

and testing samples were highly similar, such as those from the same tissue type and disease state. In

addition to avoiding such memorization, the pairing of long and short chromosomes in our procedure also

led to a similar number of transcripts in each chromosome pair. To make our results more reliable, we

also repeated each classification task 10 times with different random seeds used to construct the Random

Forest models, and reported the average performance.
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Feature importance evaluation

To evaluate the importance of different features in explaining transcript expression levels, we used a

forward-searching procedure to construct models with only subsets of the most useful features. Specif-

ically, we started with constructing models having only one feature, and compared their performance.

The feature used in the most accurate model was then added to the set of selected features, and new

models were constructed by having this feature plus one of the remaining features. This procedure was

repeated iteratively, with the feature leading to the best performance in each iteration added to the set

of selected features. The whole procedure ended when all features had been selected. Finally, we gave

the first x features selected a score of x, x-1, ..., 1, respectively, where x was chosen to be 1/2 of the

total number of features when all 64 features were considered separately, and 2/3 of the total number of

features/feature blocks in all other settings.

We performed this feature importance evaluation with each sample, and also summed the scores across

all samples to define a single importance score for each feature.

In addition to individual features, we also used this procedure to evaluate the importance of different

feature blocks.

Statistical modeling of expression levels

Since the grouping of transcripts into expression classes relied on a specified way of defining the classes

and a specific number of classes, to ensure that our findings were not affected by our specific choices, we

also constructed regression models to predict the log expression level of the transcripts based on their

methylation features. Specifically, for a transcript with a FPKM value of y, we used log10(y + 1) as

the prediction target. We used support vector regression with a radial basis function (RBF) kernel to

construct the models. Model performance was evaluated using the same cross-validation procedure as

in the case of predicting expression classes, quantified by both Pearson’s correlation and Spearman’s

correlation coefficients.

Definition of differential expression classes

To define differential expression classes, we first calculated a differential expression level of each transcript

by subtracting its FPKM value in a normal sample from its FPKM value in the corresponding tumor

sample, FPKMdiff = FPKMtumor - FPKMnormal. We kept only transcripts with no missing data in

all 6 samples pairs. Then for each tissue type, we used the median differential expression level of a
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transcript among the three sample pairs to determine its differential expression class. Transcripts with

a median differential expression level between −10−5 and 10−5 were considered having no significant

change of expression and were not included in any of the classes. For the remaining transcripts with a

positive differential expression level (i.e., higher expression in tumor), we took the top and bottom x%

of transcripts with the largest and smallest absolute differential expression values to define the strongly

up-regulated and weakly up-regulated classes, respectively, where x is a variable and we called 1 − 2x%

as the gap percentage between the two classes. We tried different values of the gap percentage from

10 to 90, with 80 used as the default as a tradeoff between the clear separation of the two classes and

the number of transcripts that can be included in them. In the same way, we also defined the strongly

down-regulated and weakly down-regulated classes.

Statistical modeling of differential expression classes

For each tumor-normal pair of samples, we compared the sizes of the four classes, and randomly down-

sampled the larger ones until all four classes had the same number of transcripts. This random down-

sampling was repeated 10 times to generate 10 different data sets. We then trained and tested Random

Forest models for the 4 differential expression classes together using the union of methylation features

from individual samples and the same cross-validation procedure as in the case of modeling expression

classes.

Analysis of differentially methylated regions

Differentially methylated regions (DMRs) were first identified by Metilene v0.2-6 (Jühling et al., 2016)

based on the beta values of CpG sites from the four types of methylation data. For each tissue type, the

three tumor samples were compared with the three normal samples to identify the DMRs. We further

filtered the DMRs by retaining only those at least 100bp long with at least 3 CpG sites having 3×

read coverage, and an average difference of beta value between the samples in the tumor and non-tumor

groups at least 0.1. We also tried 5 other sets of values for these filtering parameters, but the resulting

trends were all highly similar. We considered a DMR called from one data set to overlap a DMR called

from another data set if the intersection of them constitutes at least x% of both DMRs, where x is the

minimum overlap ratio and we tried a range of values for it. To count the number of DMRs commonly

called from two data sets, we first obtained two numbers, namely the number of DMRs in the first set

that overlaps one or more DMRs in the second set, and the number of DMRs in the second set that
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overlaps one or more DMRs in the first set. It turns out that these two sets of numbers were usually

identical and differed at most by a small number. We therefore used their average in our report.

We also used a second method, dmrseq (Korthauer et al., 2018) v1.0.14, to call DMRs. Since dmrseq

requires read coverage as input, which is not well-defined for the derived 5mC and 5hmC levels, we only

used it to call DMRs from the WGBS and oxWGBS data. For each tissue type, we discarded CpG sites

with less than 3 reads in any sample, and then ran dmrseq to call DMRs using default settings. For the

liver samples, no DMRs were called from the WGBS data. We found that this was due to differences

in the methylome profiles between liver tumor sample T2 and the other two liver tumor samples. We

therefore removed this sample and reran DMR calling using dmrseq.
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Figure 1: Definition of the regions associated with each transcript and the resulting data set. A Genomic
regions defined for each transcript at which the beta values or PDR values were used to infer expression
level of the transcript. Both the upstream (Up) and downstream (Down) regions were divided into
five 400bp bins (Up1-Up5 and Down1-Down5). The transcript body (Body) was divided into first exon
(FirstEx), first intron (FirstIn), internal exons (IntEx), internal introns (IntIn), last exon (LastEx) and
last intron (LastIn). B A heat map of the resulting large data set for sample Liver T1. Each row
represents a transcript and the transcripts are sorted in ascending order according to their expression
levels. The four blocks of columns represent beta values based on WGBS, oxWGBS, 5mC and 5hmC,
respectively. Within each block, the different columns are respectively Up5-Up1, FirstEx, FirstIn, IntEx,
IntIn, LastEx, LastIn and Down1-Down5. After the four methylation blocks, the last two columns show
the log expression level and expression class, respectively. C Hierarchical clustering of the samples based
on all their methylation features in the large data set using Ward’s method. 24
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Figure 2: Accuracy of the models for inferring expression classes based on the large data set. A-C Each
bar represents the distribution of AUROC values across the three expression classes of the three samples
in each sample group. A Comparison of models involving different combinations of methylation features
from all associated genomic regions of the transcripts. B Comparison of models involving both 5mC and
5hmC levels at different combinations of genomic regions associated with each transcript. C Comparison
of several knowledge-driven models. D The most useful methylation feature blocks for inferring gene
expression level based on the forward-search procedure of feature selection. For each sample, the top
feature block was given a score of 8, the second given a score of 7, and so on, for the top 8 feature blocks.
The total score of each feature block across all 12 samples is shown as a percentage of the maximum
possible score of 8×12=96.
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Figure 3: Generality of the models for predicting expression classes with all methylation features based
on the large data set. Each row corresponds to a sample from which the model was trained, and each
column represents a sample to which the model was applied, based on which the evaluation measure was
computed. The training and testing transcripts were disjoint no matter the testing sample was the same
as or different from the training sample.
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Figure 4: Relationship between methylation and differential expression in cancer. A Accuracy of the
models for inferring differential expression class, involving all beta value features, based on the large data
set with an inter-class gap percentage of 80%. Each bar represents the AUROC values of the three pairs
of samples in the group. B Overlap of DMRs identified using only WGBS data, only oxWGBS data, only
5mC levels, or only 5hmC levels, for liver (left) and lung (right) samples using Metilene. The lower plots
are zoom-in views of the bottom parts of the upper plots.
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Supplemental figures

Figure S1: Heat maps of the large data sets of the different samples. In each panel, each row represents
a transcript and the transcripts are sorted in ascending order according to their expression levels. The
first four blocks of columns represent methylation levels based on WGBS, oxWGBS, 5mC and 5hmC,
respectively. Within each block, the different columns are respectively Up5-Up1, FirstEx, FirstIn, IntEx,
IntIn, LastEx, LastIn and Down1-Down5. After the four methylation blocks, the last two columns show
the log expression level and expression class, respectively. The different panels correspond to normal
livers 1-3 (A-C), liver tumors 1-3 (D-F), normal lungs 1-3 (G-I) and lung tumors 1-3 (J-L).
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Figure S2: Projection of the liver tumor and normal liver samples from Li et al. (2016) and Hlady et al.
(2019) onto the first two principal components based on 5mC (A) and 5hmC (B) beta values. For the
data from Hlady et al. (2019), 5hmC beta values were computed from TAB-RRBS data and 5mC beta
values were computed by subtracting the corresponding 5hmC beta values from the RRBS beta values,
set to zero if negative. The CpG sites covered by both data sources were then collected and projected
onto the space orthogonal to a vector that indicates the data source. Principal component analyses were
then performed on the resulting data.
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Figure S3: Modeling accuracy for transcripts with different read coverage. The model involving methy-
lation features from all 16 regions were applied to infer the expression class of transcripts in the cross-
validation setting. The features included were either both WGBS and oxWGBS (A and B), WGBS only
(C and D), or oxWGBS only (E and F). Transcripts with different BS (A, C and E) and oxBS (B,
D and F) read coverage were then separated into different bins, and the average AUROC values of the
transcripts in each bin were computed separately.
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Figure S4: Comparison of models involving only features from the 16 regions or also features from
extended flanking regions. The original models involved all types of methylation features from the 16
regions associated with each transcript. The extended models involved three additional 5000bp bins
upstream of Up5 and three additional 5000bp bins downstream of Down5.
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Figure S5: Modeling accuracy of the three expression classes involving all methylation features at all 16
regions associated with each transcript based on the large data set. Each bar shows the AUROC value
of the cross-validation result when that expression class was considered the positive class. The number
above each panel is the average AUROC of the three classes weighted by their transcript counts.
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C+NC Lv1-3 C Lv1-3 C+NC Lv1-2 C Lv1-2 

Figure S6: Average modeling accuracy of the three expression classes when all methylation features at
all 16 regions associated with each transcript was considered, involving i) either both protein-coding and
non-coding transcripts (“C+NC”) or protein-coding transcripts only (“C”), and ii) either GENCODE
levels 1-3 transcripts (“Lv1-3”) or only GENCODE levels 1-2 transcripts (“Lv1-2”), based on the large
data set. Each bar shows the average AUROC value of the three expression classes, weighted by their
sizes, where the AUROC value of each expression class is the cross-validation result when this class was
considered the positive class.
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Figure S7: Average modeling accuracy of the three expression classes involving methylation features at
all 16 regions associated with each transcript based on the large data set and data from additional tissue
types. A-E Each bar represents the distribution of AUROC values across the three expression classes
of the samples in each sample group from the five data set. F Relationship between the genome-wide
average 5hmC level and the increment of AUROC value when comparing models involving both 5mC
and 5hmC features with models involving 5mC features alone.
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Figure S8: Accuracy of the models for inferring log expression levels based on the large data set. Each bar
represents the distribution of correlation values across the different cross-validation folds of three samples
in each sample group. A,B Comparison of models involving different combinations of methylation features
from all genomic regions associated with each transcript. C,D Comparison of models involving all types
of methylation features from different combinations of genomic regions associated with each transcript.
E,F Comparison of several knowledge-driven models. In these six panels, the models were evaluated by
Pearson’s correlation (A,C,E) or Spearman’s correlation (B,D,F) of the cross-validation results. S8
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Figure S9: The most useful methylation features for inferring expression classes according to the forward-
search procedure of feature selection, considering all methylation features types (A), WGBS only (B),
oxWGBS only (C), 5mC only (D) or 5hmC only (E), based on the large data set. For each sample, the
top feature was given a score of x, the second top feature was given a score of x-1, and so on, for the top
x features, where x=32 in Panel A and x=11 for Panels B-E. The total score of each feature across all
the samples is shown as a percentage of the maximum possible score.
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Figure S10: Change of model accuracy with each additional feature block during the forward search
procedure, based on the large data set. Numbers along the x-axis show the feature block IDs, with the
corresponding feature blocks stated in the box on the right. The red dash line shows the “best case”
AUROC of the model involving all feature blocks.
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Figure S11: Change of model accuracy with each additional feature during the forward search procedure,
based on the large data set. Numbers along the x-axis show the feature IDs, with the corresponding
features stated in the box on the right. The red dash line shows the “best case” AUROC of the model
involving all features.

S11



Figure S12: Pearson’s correlations between log expression level and 5mC/5hmC levels at individual
sub-regions based on the large data set. Statistically significant positive/negative correlations with a
Bonferroni corrected p-value of 0.05 are represented by red/blue bars, while insignificant correlations
are represented by black bars. These p-values were computed by randomly permuting the methylation
levels of the transcripts in the respective region and calculating the resulting correlation with transcript
expression levels. P-value was then defined as the fraction of times that the correlation value in the
permuted cases was larger than the one in the original unpermuted case, further corrected by the number
of tests performed (i.e., number of bars in each panel).
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Figure S13: Relationship between transcript expression levels and their 5mC and 5hmC levels at transcript
bodies based on the large data set. Each panel corresponds to a sample. In each panel, each circle
corresponds to a transcript, with the x-axis and y-axis respectively represent the 5mC and 5hmC levels.
The color of a circle indicates the expression level of the transcript, with a darker color indicating a higher
expression level. Circles for transcripts with a higher expression level are placed on top of those with a
lower expression level.
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Figure S14: Accuracy of the models for inferring expression classes based on the small data set. Each
bar represents the distribution of AUROC values across the three expression classes of the three samples
in each sample group. A Comparison of models involving different combinations of methylation features
from all genomic regions associated with each transcript. B Comparison of models that integrate different
feature sets. In both panels, red dots indicate outliers.
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Figure S15: Accuracy of the models for inferring log expression levels based on the small data set. Each
bar represents the correlation values across the three samples in each sample group. A,B Comparison of
models involving different combinations of methylation features from all genomic regions associated with
each transcript in terms of Pearson’s correlation (A) or Spearman’s correlation (B). C,D Comparison of
models that integrate different feature sets in terms of Pearson’s correlation (C) or Spearman’s correlation
(D).
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Figure S16: Additional results about differential methylation and differential expression between tumor
and matched normal tissue pairs. A Number of transcripts and distribution of median AUROC values
at various gap percentages between the strong and weak differential expression classes. A larger gap
percentage makes the transcripts in the strong differential expression classes having differential expression
values much stronger than those in the weak differential expression classes, at the expense of including less
transcripts in these classes. B,C Accuracy of the models for inferring differential expression classes based
on the large data set with an inter-class gap percentage of 80%. Each bar represents the distribution of
AUROC values across the different cross-validation folds of three pairs of samples in each tissue type.
B Comparison of models involving different combinations of methylation features from all associated
genomic regions of the transcripts. C Comparison of models involving all types of methylation features
from different combinations of genomic regions. D-F Overlap of DMRs identified using only WGBS data
or oxWGBS data, for all liver samples (D), all liver samples except tumor T2 (E), and all lung samples
(F) using dmrseq. S16




