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Abstract

Structural variations (SVs) are commonly found in cancer genomes. They can cause
gene amplification, deletion, and fusion, among other functional consequences. With an
average read length of hundreds of kilobases, nano-channel-based optical DNA mapping
is powerful in detecting large SVs. However, existing SV calling methods are not tailored
for cancer samples, which have special properties such as mixed cell types and sub-
clones. Here we propose the COMSV method that is specifically designed for cancer
samples. It shows high sensitivity and specificity in benchmark comparisons. Applying
to cancer cell lines and patient samples, COMSV identifies hundreds of novel SVs per
sample.
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Key points:

• Identifying structural variations from cancer samples is difficult due to cell type admix-
ture, sub-clones, aneuploidy, and large number of complex variations.

• We propose COMSV, which is specifically designed for identifying structural variations
from optical DNA mapping data produced from cancer samples.

• COMSV uses a flexible algorithm that can handle the challenging properties of cancer
samples.
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• We show that COMSV has high precision and recall in detecting various types of
structural variations.

• Using COMSV, we identified structural variations from a compendium of cancer cell
lines, xenografts, and patient samples from various cancer types.

1 Background

Structural variations (SVs), such as large insertions, deletions, inversions, translocations, and
copy number variations, are commonly found in cancer genomes [1–3]. Their high prevalence
is due to a combination of factors, including defects in the DNA replication and repair
pathways and inefficient apoptotic response [4–7]. SVs in cancer genomes can cause a variety
of functional consequences, including altered protein sequence, gene loss, change of gene
copy number, gene fusion, perturbed epigenetic signals and gene regulation, and change
of 3D genome structure [8–11]. Furthermore, some SVs are recurrent in particular cancer
types [12–14], rendering them potentially useful for cancer diagnosis and classification.

It is challenging to detect large SVs by short read sequencing due to difficulties in read
alignment and determination of the whole genomic span affected by an SV, especially when
the break points are within tandem repeats or when the SV involves DNA contents not
contained in the reference [15, 16]. As such, it has been shown advantageous to use different
experimental technologies to detect SVs of different sizes and complexities [10]. Among the
technologies currently available, optical DNA mapping [17, 18], due to its long read length
(hundreds of kilobases on average), is powerful for detecting large SVs. The low cost also
makes optical DNA mapping an attractive option as compared to long-read sequencing.

In nano-channel-based optical mapping systems [18], specific sites on the DNA are labeled
either by single-stranded enzymatic nicking followed by repair with fluorescent dye conjugated
nucleotides, or by direct labeling methods without nicking DNA (e.g, Bionano Genomics’s
Direct Label and Stain [DLS] protocol). The labeled DNA molecules are linearized and
imaged in nanometer-scaled channels. The positions of the fluorescent labels on each molecule
define a signature of the molecule, which can be compared with the expected label positions
derived from a reference genome to determine the genomic location from which the molecule
originated and identify any differences between the DNA molecule and the aligned region of
the reference.

Based on this idea, a few methods have previously been proposed for calling SVs from
optical mapping data [19–21]. These methods have been extensively applied to identify SVs
from human samples [22–24]. However, all these methods were originally developed for non-
cancer samples, and are thus not suitable for cancer samples due to their unique properties,
as follows.

First, cancer samples usually contain a mixture of other cell types in addition to cancer
cells, such as cells from adjacent non-cancer tissues, immune cells, and stromal cells [25]. As
a result, for an SV specific to cancer cells, among all the DNA molecules from that locus, only
those coming from the cancer cells would contain information about the SV. This fraction
of SV-supporting molecules can be small when the tumor content in the sample is low, and
it is further halved for a heterozygous SV. An SV calling method developed for non-cancer
samples can easily miss these SVs if it wrongly assumes that all the cells have the same
genetic makeup and expects each SV to have around 100% or 50% of the aligned molecules
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supporting it in the cases of a homozygous and heterozygous SV, respectively. This issue is
further aggravated by the presence of cancer sub-clones, each of which can contain a different
set of SVs.

Second, it is common for cancer genomes to have abnormal copy numbers at different
scales, from specific focal genomic regions (e.g., extrachromosomal circular DNAs) to whole
chromosomes (aneuploidy). Therefore, the proportion of SV-supporting molecules can vary
substantially along the genome. An SV calling method designed for non-cancer samples
would fail to detect many SVs if it wrongly assumes that the proportion of SV-supporting
molecules distributes around two constant mean values, x% and x/2% respectively for all
homozygous and heterozygous SVs in the whole genome, even if it allows x to take a value
other than 100.

Third, as compared to non-cancer genomes, cancer genomes usually contain substantially
more SVs and the SVs are more complex. Accordingly, the resulting alignments and de novo
assemblies of optical mapping data usually contain more errors, which can lead to inaccurate
SV calls for SV identification methods that depend heavily on the reliability of the alignments
or assemblies.

Realizing these challenging properties of cancer genomes, here we propose a new method,
COMSV (Cancer Optical Mapping for detecting Structural Variations), which is specifically
designed for cancer samples. We show that it has higher precision and sensitivity as compared
to existing SV callers. We also demonstrate the use of COMSV in accurately calling SVs
from both cancer cell lines and patient tumor samples.

In addition, we propose a new scheme for SV annotation that provides more information
than the ones used by the previous SV calling methods, taking into account redundancy of
reported SVs (e.g., not to report a duplication also as an insertion), uncertainty of SV break
points (e.g., distinguishing between fully identified SVs and those having only partial break
point information), and potential functional consequences of the SVs.

2 Methods

COMSV includes a pipeline for identifying insertions and deletions (the “indel pipeline”)
and a pipeline for identifying other types of SVs (the “complex SV pipeline”). A high-level
description of the pipelines is given below, whereas the details are provided in Supplementary
Methods.

The indel pipeline, which is based on alignment results, consists of four main steps (Fig-
ure 1a-d), namely 1) processing of the resulting alignments, 2) extraction of inter-label dis-
tances, 3) clustering of the inter-label distances and initial identification of indels, and 4)
post-processing of the indel calls. Each of these steps involves designs customized for cancer
samples.

COMSV takes as input the alignment of optical mapping data of individual DNA molecules
to a reference map produced by the in silico digestion of a reference genome. In the first step
(Figure 1a), COMSV normalizes the distances between labels on the molecules to correct
for incomplete molecular linearization [21]. After normalization, if the distance between two
adjacent labels on a molecule deviates substantially from that on the reference, there could
be an indel or the alignment could be wrong. Depending on whether multiple molecules dis-
play similar distance deviations consistently, COMSV either identifies the region as having
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Figure 1: The COMSV pipelines, which include the indel pipeline (a-d) and the complex SV
pipeline (e-f). a Observed-to-expected distance ratios between two labels can deviate from 1
due to scaling or alignment errors (first row). After normalization, for alignments that still
have these abnormal ratios (second row, dashed rectangles), the mutually reinforcing ones
are considered indel candidates while the others are discarded (third row). Isolated label
pairs with abnormal distances are instead corrected (fourth row, green bar). b Adjacent
label pairs are collected from individual molecules to form candidate indel regions based on
their overlaps, which enables the collection of distances between non-adjacent labels from a
molecule if they are adjacent in another molecule (shown in green). c For each label pair, the
collected distances are clustered to identify the number of distinct alleles and the number of
molecules that support each of them. d For each potential indel region, the clustering result
of each label pair suggests an initial SV type, and the final SV type of the whole region is
determined by considering these suggestions jointly. e Different types of SVs that can be
identified from split-alignments. An SV break point is called if a split alignment suggests an
SV event, while a complete SV is called if the full span of the SV can be determined. f An
example of calling SV break points and complete SVs. The reference is repeatedly displayed
multiple times to show the split-alignment of each molecule clearly. Vertical dotted lines
mark key aligned labels that define the boundary of each aligned segment on the reference.
The corresponding labels on the reference are shown in red. Break point information is first
collected from individual molecules and then considered together to refine the break point
locations and determine whether complete SVs can be called.

a potential indel, considers the alignment as wrong and discards it, or corrects the specific
distance value according to the consensus. These three alternative treatments are crucial for
cancer data, which have a relatively high error rate in the optical map alignments.

In the second step (Figure 1b), all pairs of adjacent labels on the reference genome and
on the aligned molecules are extracted. Conceptually, by comparing the observed distances
between two labels on the molecules and their expected distance on the reference, insertions
and deletions can be identified. However, unlike previous methods that consider each label
pair separately, COMSV groups the overlapping ones into candidate indel regions and con-
siders all pairs of labels within each region at the same time. By doing so, molecules with
the labels closest to SV break points missing can also be involved in calling an SV, which
provides more information for accurate indel calling. Redundancy is also reduced by avoiding
the same SV break point from being repeatedly called from different label pairs. In addition,
this design reduces the negative effects of incorrect molecule alignments to the SV calling
procedure.

In the third step (Figure 1c), for each label pair, their distances on the aligned molecules
are clustered. In most situations, these distances form either one single cluster or two clusters,
the former of which corresponds to having no indel or a homozygous indel while the latter
corresponds to having a heterozygous indel. However, due to mixed cell types, sub-clones and
copy number changes, the proportion of molecules that support the indel allele is not known
a priori, and the flexibility of the clustering approach enables highly sensitive detection of
indels regardless of the exact proportions. COMSV then determines both the SV type and
zygosity of each potential indel according to the clustering results.

In the fourth step (Figure 1d), the initial indels identified in the third step are further
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processed to remove redundancy and determine the consensus span. Each resulting indel is
then given a confidence score based on a model obtained by machine learning, which helps
prioritize the identified indels for experimental follow-ups.

The complex SV pipeline uses split-aligned molecules, as in previous methods, partially
unaligned molecules, and contigs assembled de novo from individual molecules to identify SVs
(Figure 1e-f). A split-aligned molecule is one with different parts of it aligned separately to
different regions of the reference. Based on the locations and orientations of these different
sub-alignments, the type of each candidate SV can be inferred (Figure 1e). Since it is
generally difficult for alignment algorithms to make accurate split-alignments, COMSV also
analyzes molecules that are partially aligned to the reference, and checks if the unaligned
parts signal the possibility of an SV. For example, if the unaligned part can be aligned to
the same reference location as the aligned part, there could be a tandem duplication. This
re-alignment approach of COMSV can identify additional SVs missed by the split alignments.
Finally, aligning contigs to the reference provides very long-range information required by
some SV types such as translocations.

For all the SV candidates identified from the split-alignments and partial alignments, the
information collected from different molecules is further integrated to produce a final set of
non-redundant SVs with detailed annotations (Figure 1f).

The details of the pipeline are provided in Supplementary Methods. We also provide
COMSV as an open-source tool, available freely at https://github.com/kevingroup/COMSV.

3 Results

3.1 Comparisons between COMSV and other methods

We compared COMSV with three existing methods for identifying SVs from optical mapping
data, namely Bionano Solve [19], OMIndel [20] and OMSV [21], first using simulated indels
with the proportion of molecules from the SV locus that support the SV allele varying from
10% to 90% (Figure S1).

In terms of precision (i.e. the ratio of SVs called by a method that are true), all methods
had stable performance when the proportion of SV-supporting molecules was reasonably
large, but COMSV best maintained the high precision when the proportion of SV-supporting
molecules was lower than 15%, no matter zygosity was ignored (Figure S1a) or considered
(Figure S1b). This shows that the other methods were unable to distinguish between true
SV cases and sizing/alignment errors when the proportion of SV supporting molecules is low.

In terms of recall (also called sensitivity, i.e., the ratio of true SVs that are called by a
method), all methods performed better when the proportion of SV-supporting molecules was
large, but the performance of COMSV deteriorated much more slowly than OMIndel and
OMSV when the proportion decreased (Figure S1c). When correct zygosity was required,
COMSV outperformed all the three other methods when the proportion of SV-supporting
molecules was large (Figure S1d).

Overall, COMSV achieved the best balance between precision and recall, as indicated by
its consistently high F1 score for all proportions of SV-supporting molecules (Figure S1e,f).

Next, we produced a set of simulated data with mixed cell types. Specifically, based on
a cell evolution graph (Figure S2), we simulated SVs in four groups of cells, namely normal
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cells (Sample 1), trunk cancer cells (Sample 2), and cancer cells in two sub-clones (Samples
3 and 4). Due to the evolutionary relationships between these cells, Samples 2, 3 and 4
contain all the SVs of Sample 1, while Samples 3 and 4 contain most SVs of Sample 2. We
then produced optical mapping data from each of these four pure cell types, as well as three
cell mixture scenarios of increasing complexity (Table S1), namely a cancer sample with
high tumor content (Sample 5), a cancer sample with low tumor content and one sub-clone
(Sample 6), and a cancer sample with low tumor content and two sub-clones (Sample 7).

We evaluated the performance of the four methods based on each type of SVs they iden-
tified from each sample (Figure 2). For the homogeneous cell samples (Samples 1-4), the
performance of COMSV was comparable with Bionano Solve and OMSV in calling deletions,
insertions and inversions (Figure 2a-c), which is expected since Bionano Solve and OMSV
were originally designed for normal samples that do not have mixed cell types. For duplica-
tions, COMSV outperformed Bionano Solve and OMSV (Figure 2d), partially attributable
to its targeted re-alignment of unaligned parts of molecules.

The strengths of COMSV are more clearly demonstrated by its performance on the het-
erogenous cell samples (Samples 5-7), especially the most complex sample with two sub-clones
(Sample 7). COMSV outperformed all the other methods substantially for all four types of
SVs in this sample (Figure 2a-d). When the SVs introduced at different stages during the
simulated cancer evolution were investigated separately, we found that the better perfor-
mance of COMSV was largely due to SVs specific to the cancer cells, especially those in
the sub-clones (Figure 2e). These results show that COMSV is more capable of handling
the special properties of cancer samples, such as the presence of sub-clones, than the other
methods.

To investigate how the SV calling performance of the different methods was affected by
alignment accuracy, we supplied the correct molecule alignments as inputs to them (Fig-
ure S3). In general, all methods benefited from receiving these correct alignments. For
example, OMSV became much more capable of identifying inversions and duplications when
supplied with the correct alignments (comparing Figure 2c-d with Figure S3c-d). Yet im-
portantly, the performance of COMSV was only minimally reduced when it was given the
real, noisy alignments as compared to having the artificial, correct alignments, showing that
it does not require alignments of very high quality as input. This is important since for real
cancer samples, molecule alignments are expected to contain a high level of errors.

Besides, even when the correct alignments were supplied to all methods, COMSV still
performed substantially better than the other methods when calling indels from the samples
with cancer sub-clones (S6 and S7) (Figure S3a-b), suggesting that these other methods had
additional limitations unrelated to their reliance on correct alignments.

Next, we compared COMSV with the Bionano rare variant pipeline (RVP), which was
specifically designed for detecting SVs from optical mapping data with a low fraction of
molecule support. Since this pipeline was mainly designed for optical mapping data produced
from DLS, we produced a new set of simulated data based on the recognition sites of the
Direct Labeling Enzyme 1 (DLE-1). As seen in Figure 2f, COMSV outperformed RVP and
the other three methods on the DLS data, especially in detecting SVs specific to the cancer
sub-clones. RVP performed better than the original Bionano Solve in detecting rare inversions
and duplications specific to the cancer sub-clones, but it still failed to detect many insertions
and deletions in sub-clone 2.

Overall, these results show that COMSV is able to detect SVs of various types with high
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precision and sensitivity, from optical mapping data labeled by either a nicking enzyme or
DLS. The advantage of COMSV over the other existing methods is most prominent when
detecting SVs supported by few molecules such as those contained only in specific cancer
sub-clones.

3.2 Identification of SVs from cancer samples

With the ability of COMSV in identifying SVs from synthetic data with cancer properties
verified, next we applied it to identify SVs from real cancer samples. We obtained optical
mapping data, including previously published data and some data newly generated in this
study, from cancer and non-cancer cell lines and patient samples (Table S2). By comparing
the SVs identified from the cancer and non-cancer samples, especially matched blood samples
from the same patients, cancer-specific SVs could be identified. The matched non-cancer
samples also helped evaluate the sensitivity of our SV calls, because most SVs identified
from the non-cancer sample should also be detected in the corresponding cancer sample.
Our pipelines support data produced by either nicking enzymes or DLS (Supplementary
Methods).

From each cancer sample, we detected 865-2,525 SVs (Figure 3, Table S3). We verified the
reliability of these SVs using two different methods. First, we checked whether the SVs have
been previously reported in the general populations, in cancer samples, and in exactly the
same samples but having the SVs detected using a non-optical mapping method (Figure S4,
Supplementary Methods). From the results (Figure 3, Table S3), we found that 53.5%-92.9%
of the SVs were previously reported in non-cancer samples from general human populations.
These SVs are therefore likely not cancer-specific but are simply alleles not contained in
the reference genome. Among the remaining SVs, some were previously reported in cancer
samples by the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, including
SVs identified only from the same cancer/tissue type of our samples and those that were
also identified from other cancer/tissue types. These SVs constituted up to 14.1% of all
SVs we found in a sample. For some of our samples, we also had SVs previously identified
using other types of data, including short-read sequencing, linked-read sequencing, and Hi-C
(Table S7). Among the SVs we identified from each of these samples, there were 159-1,029
of them reported in these previous studies (Table S8). Overall, on average ∼80% of the SVs
we identified from each sample have direct support from at least one of these three types
of previous studies. In contrast, when we took the SVs identified by COMSV from all the
DLE-1 and Nt.BspQI data sets and moved them to random locations in the genome, only
22.1% and 35.9% overlapped with these previously reported SVs, respectively (Table S3),
showing that the fraction of SVs identified by COMSV from the samples having independent
support is much higher than this count- and size-matched random SV set. On the other
hand, we have also identified a large number of novel SVs, at an average of 375 of them per
sample. As a community resource, SVs identified from individual samples are provided in
Supplementary File 1 and a unified non-redundant list of all the novel SVs is provided in
Supplementary File 2. These novel SVs were likely missed by the previous studies because of
their cancer-type specificity (some cancer types of our sample are missing in PCAWG, such
as nasopharyngeal carcinoma), sample specificity, and difficulties in identifying them without
the long-range information provided by optical maps.

Next, we compared the SVs identified from matched cancer and non-cancer samples ob-
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Figure 3: SVs identified by COMSV from the real samples. For each set of data, the identified
SVs are put into different categories based on supporting evidence of them from independent
data.

tained from the same patients. For the four tongue squamous cell carcinoma samples, optical
mapping data from blood samples of the same patients were also produced. Calling SVs from
each sample independently and then comparing these SV call sets (Table S4), we found that
the call sets of the tumor and blood samples from each patient are more similar to each other
than to either cancer or blood call sets from other patients. This observation is consistent
with the large proportion of non-cancer-specific SVs we found from the samples, as discussed
above. Furthermore, in all four pairs of samples, we found that the proportion of SVs called
from the blood samples that were also called from the matched cancer samples (86.8%-90.0%)
is larger than the proportion of SVs called from the cancer samples that were also from the
matched blood samples (77.2%-85.3%) (Table S4), which is in line with the expectation that
the cancer samples contain somatic SVs not present in the matched blood samples.

To illustrate the different types of SVs identified by COMSV from the cancer samples,
we visualize the alignments involved in several examples. Figure 4 shows two examples of
novel insertions called from the cancer samples not reported in the other sources that we
analyzed. Figure 4a shows a 2.6kb insertion on chromosome 19. This insertion was called
in five samples, including 7403 Cancer, 10974, Caki2, K562, and LNCaP. From the molecule
alignments in 7403 Cancer and K562 (Figure 4a), it is clear that the insertion is heterozygous
in both samples, although the fraction of molecules that support the insertion is closer to
50% in 7403 Cancer than in K562 (which is <40%). In contrast, in samples 7052 Cancer
and 7528 Cancer from which the insertion was not called, all molecules aligning to this
locus do not support the presence of an insertion. Histograms of the distance between the
anchoring labels also clearly show a bimodal distribution of distances in 7403 Cancer and
K562, but a unimodal distribution of distances close to the expected distance according to
the reference genome in 7052 Cancer and 7528 Cancer. Based on the two anchoring labels
between which the distance on the supporting molecules is larger than the expected distance
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on the reference, the insertion enclosing region (i.e., the region within which the insertion
happens) overlaps the ZNF429 gene. ZNF429 was reported to have the highest mutation
frequency (36% with missense mutations) in the rare thymoma and thymic carcinoma in a
small study of 14 samples [26], but otherwise there were few former reports of mutations
of this gene in cancer. Our finding that this SV is contained in five cancer types from
different tissues (tongue squamous cell carcinoma, hepatocellular carcinoma, kidney clear
cell carcinoma, chronic myelogenous leukemia, and prostate adenocarcinoma) may indicate
a previously unappreciated role of this novel SV and the ZNF429 gene in cancer.

Similarly, Figure 4b shows a 3.2kb insertion on chromosome 5 that is identified in four
samples, including 7518 Cancer, 7528 Cancer, LNCaP, and SK-BR-3. Again, the insertion
is found to be heterozygous in 7518 Cancer and 7528 Cancer, but only 27/186=15% and
12/109=11% of the aligned molecules support the insertion in these samples, respectively.
Considering that a) the absolute numbers of supporting molecules (27 and 12) are still fairly
large, b) the quality of these alignments is good, as judged by the consistency of their label
patterns and the expected pattern on the reference genome, and c) the insertion was called
independently in four samples, the insertion calls should be reliable. This example illustrates
COMSV’s ability to identify SVs even when the fraction of SV-supporting molecules is very
low.

Figure 5 shows two examples of novel deletions called from the cancer samples not reported
in the other sources that we analyzed. Figure 5a shows a 3.7kb deletion on chromosome 8.
The deletion was called from two samples, including 7052 Cancer (tongue squamous cell
carcinoma) and 10974 (hepatocellular carcinoma). In both samples, there is a clear bimodal
distribution of distances between the two anchoring labels, although the fraction of molecules
supporting the deletion is lower in 7052 Cancer (56/114=49%) than 10974 (66/87=76%)
(Figure 5a). The deletion-enclosing region overlaps the gene CSMD1, which is a tumor
suppressor gene in breast cancer [27] and esophageal squamous cell carcinoma [28].

Figure 5b shows a large, 10.0kb deletion on chromosome 8 that was found only in sample
7528 Cancer. The molecule alignments clearly show that the deletion is heterozygous in this
sample.

Finally, Figure 6 shows four examples of complex SVs called from the cancer samples.
Figure 6a shows an inversion identified on chromosome 8 from the thyroid anaplastic carci-
noma sample 3717. 102/152=67% of the aligned molecules support the reference allele, while
the remaining 50/152=33% of the aligned molecules support an inversion. These inversion-
supporting molecules align well to a contig assembled de novo from the optical maps, which
clearly shows an inverted pattern at the locus. This inversion is also identified from the
bladder cancer sample 3096.

Figure 6b shows an example of tandem duplication identified on chromosome 1 from the
lung pleomorphic carcinoma sample 14369. 131/164=79.9% of the aligned molecules support
only one copy of the repeating unit, defined by a pattern of four labels. The remaining
33/164=20.1% of the aligned molecules show a second tandem copy of the repeating unit
right next to the first copy.

Figure 6c shows an example of inter-chromosomal translocation identified from the breast
ductal carcinoma cell line T47D. A contig assembled de novo from the molecules has a left
segment and a right segment aligned to adjacent loci on chromosome 21, while the middle
segment between them is aligned to chromosome 13. There are 140 molecules whose align-
ments to the reference span the two loci without any split alignment, thus supporting the

11



a

7
4
0
3
-T

o
n
g
u
e
 

(In
s
 2

.6
k
b
)

7
5
2
8
-T

o
n
g
u
e
 

(N
o
 S

V
)

7
0
5
2
-T

o
n
g
u
e
 

(N
o
 S

V
)

K
5
6
2
 D

L
E

-1
 

(I
n
s
 2

.6
k
b
)

21,525,268

All 161 molecules supporting reference

48 molecules supporting insertion

67 molecules supporting reference

All 113 molecules supporting reference

29 molecules supporting insertion

30 molecules supporting reference

Insertion-enclosing region

Reference Reference

Reference Reference

b

Insertion-enclosing region

7
5
2
8
-T

o
n
g
u
e
 

(In
s
 3

.2
k
b
)

7
0
5
2
-T

o
n
g
u
e
 

(N
o

 S
V

)
3
7
1
7
-T

h
y
ro

id
 

(N
o
 S

V
)

7
5
1
8
-T

h
y
ro

id
 

(I
n
s
 3

.2
k
b
)

176,029,552 176,034,160

159 molecules supporting reference

All 203 molecules supporting reference

12 molecules supporting insertion 27 molecules supporting insertion

97 molecules supporting reference

All 192 molecules supporting reference

Reference Reference

Reference Reference

Figure 4: (Caption on the next page.)

12



Figure 4: Examples of insertions called, from chromosome 19 (a) and chromosome 5 (b).
In each panel, the top part shows the detected location of the insertion and a gene that it
overlaps. The middle part shows the expected label pattern in the locus and the observed
label patterns on optical maps from samples that have the insertion called or not called. A
blue, pink and black dot on a molecule corresponds to an anchor label, a non-anchor aligned
label, and an unaligned label, respectively. If the number of molecules aligning to the locus is
too large, only the molecules with the largest and smallest distances between the anchoring
labels are shown. The lower part shows the observed distance between the two anchoring
labels between which the insertion is called. The expected distance according to the reference
genome is marked with a red vertical line.

reference allele. On the other hand, there are 68 molecules that are split-aligned to the first
segment on chromosome 21 and to chromosome 13, which support the first set of transloca-
tion break points. Similarly, there are 76 molecules split-aligned to the second segment on
chromosome 21 and to chromosome 13, which support the second set of translocation break
points. Finally, there are 6 molecules whose alignments cover the first segment on chromo-
some 21, followed by chromosome 13, followed by the second segment on chromosome 21, and
therefore they support the whole translocation. Interestingly, this translocation (or some of
its break points) is also identified from 15 other samples (Huh7, LNCaP DLE-1, LO2, H460
DLE-1, 261T, 3096, 3717, 7052 Cancer, 7403 Cancer, 7518, 7528 Cancer, 7622 Cancer, 7708,
10974, and 14369). The large number of samples from which the translocation signals are
independently detected and the presence of molecules that support the whole translocation
event make this a very reliable translocation call.

Finally, Figure 6d shows a very complex set of SVs identified from the tongue squamous
cell carcinoma sample 7403 Cancer. The contig assembled de novo from the molecules is
partly aligned to chromosome 16 and partly aligned to chromosome 6, which form an inter-
chromosomal translocation (I). The two segments of the contig aligned to chromosome 16
are aligned to different regions of chromosome 16 in opposite orientations, thus forming
an intra-chromosomal translocation (II). The first segment shows patterns of a duplication
(III), with a duplicated copy containing a deletion (IV). The other segment shows patterns
of two insertions (V and VI). Since the reliability of this complex set of SVs depends on the
correctness of the contig, we checked the alignments of individual molecules to it and found
that it is supported by a large number of aligned molecules (Figure S5).

Overall, these examples demonstrate the ability of COMSV in calling SVs of different
types and zygosities, including those with only a small proportion of supporting molecules.

4 Discussion

Despite recent advances in long-read sequencing technologies and the release of new high-
throughput platforms (such as the PacBio Revio system), optical DNA mapping still has
the longest average read length of over 300kb from routine procedures. The cost of optical
DNA mapping is also relatively low (US$500 for 500× coverage of the human genome) as
compared to long-read sequencing, making it a preferred platform for detecting large struc-
tural variations. Together with low-coverage sequencing data, the precise break points at
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Figure 5: Examples of deletions called, both from chromosome 8. In each panel, the top
part shows the detected location of the deletion and a gene that it overlaps. The middle
part shows the expected label pattern in the locus and the observed label patterns on optical
maps from samples that have the insertion called or not called. A blue, pink and black dot
on a molecule corresponds to an anchor label, a non-anchor aligned label, and an unaligned
label, respectively. If the number of molecules aligning to the locus is too large, only the
molecules with the largest and smallest distances between the anchoring labels are shown.
The lower part shows the observed distance between the two anchoring labels between which
the deletion is called. The expected distance according to the reference genome is marked
with a red vertical line.

base resolution could also be determined. For example, optical mapping can be first used to
confidently identify rough locations of SVs, and then a local assembly of sequencing reads
can be performed to improve the precision of break points detection, as previously demon-
strated [21].

For the SVs identified by COMSV from each of the human samples, we found supports
from previous studies for an average of 80.0% of them (ranging from 57.0%-93.3%). These
SVs were previously identified from the general population, cancer samples (specific to the
same cancer/tissye type or also other cancer/tissue types), and the same samples (based on
non-optical mapping methods). One limitation of this analysis is the uneven coverage of
the samples in previous studies. Whereas some cancer types were extensively studied, some
others (e.g., nasopharyngeal carcinoma) were missing from large-scale cancer studies such as
PCAWG. In addition, some particular samples had SVs called using multiple types of exper-
imental methods previously, while other samples had none. Despite these differences, in each
sample at least 6.7% of the SVs identified by COMSV were not found in the previous studies
considered. We believe this is due to a combination of both the use of optical DNA mapping,
which provides long read length, and the higher sensitivity of COMSV as compared to other
existing SV calling methods. It would be useful to further validate these SVs and investigate
their functional significance, especially the ones that COMSV independently identified from
multiple samples. As more optical DNA mapping data are produced from cancer samples,
we also hope to apply COMSV to identify SVs from them to create a comprehensive catalog
of large and complex SVs present in cancer genomes. COMSV can also be applied to other
species with a high-quality reference genome, such as mouse, which is commonly used in
cancer studies.

For the samples with both Nt.BspQI and DLE-1 data, the two sets of SVs overlapped but
each also contained unique SVs. This could be due to a number of reasons. First, DLE-1 in
general has a higher density of labels than Nt.BspQI, allowing it to provide more information
for calling SVs in general. However, there are also some loci at which Nt.BspQI produces
more labels than DLE-1 (Figure S6). Second, DLE-1 prevents double-strand breakage at
“fragile sites” caused by nearby nicks on opposite strands, leading to longer DNA molecules
and thus better preservation of long-range information for SV calling. Third, due to different
labeling densities and patterns, alignment and assembly methods optimized for one labeling
method may not work well, or not without careful re-calibration, for the other labeling
method. Alignment/assembly errors thus caused may have led to some of the inconsistencies
in the two sets of SVs. Finally, although the optical mapping data sets involved in this study
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Figure 6: Examples of complex SVs called. a An inversion called on chromosome 8. In
addition to the individual molecules, the contig assembled from the molecules and its align-
ment with the reference are also shown. b A tandem duplication called on chromosome 1.
Each copy of the duplicating unit is highlighted by a red rectangle. c An inter-chromosomal
translocation called on chromosomes 21 and 13. Segments of a contig and individual molecules
aligned to the reference are indicated by blue parallelograms. In all three panels, a blue, pink
and black dot on a molecule corresponds to an anchor label, a non-anchor aligned label, and
an unaligned label, respectively. If the number of molecules aligning to the locus is too large,
only a sample of the molecules is shown. d A very complex set of SVs called on chromosomes
16 and 6. Aligned segments of the contig are indicated by blue parallelograms and numbered
(1-5). The individual constituent SVs are indicated by roman numerals (I-VI). The box with
dashed line boundaries indicates the region with molecule alignments shown in Figure S5.

had high depth of coverage in general, some particular loci have lower coverage in the data
for one labeling method than the other, which affects the ability to detect SVs at these loci,
especially for the SVs with low allele ratio caused by sub-clones or cell type mixture.

5 Conclusions

In this study, we have proposed the COMSV method for identifying structural variations
based on optical DNA mapping data produced from cancer samples, which is difficult due to
cell type mixture, presence of sub-clones, aneuploidy and other copy number changes, large
number of SVs, and complex SVs. We have shown that COMSV achieves good precision and
sensitivity even if the SV allele is only observed in a small proportion of molecules aligned
to the locus. Applying COMSV to cancer cell lines and patient samples, we have identified
various novel SVs not reported in previous studies, including SVs that we recurrently but
independently called from multiple samples. We have provided the SVs identified from the
human samples, which cover a wide range of tissue and cancer types, as a community resource
for studying cancer genomes.

6 Declarations

6.1 Ethics approval and consent to participate

A HCC patient who underwent hepatectomy at the Prince of Wales Hospital (Hong Kong)
was included in this study. The patient gave written consent on the use of specimen for
research purposes. The study protocol was approved by the Joint Chinese University of
Hong Kong-New Territories East Cluster Clinical Research Ethics Committee.

6.2 Consent for publication

Not applicable

17



6.3 Availability of data and materials

The datasets used and/or analysed during the current study are available from the corre-
sponding author on reasonable request.

6.4 Competing interests

The authors declare that they have no competing interests.

6.5 Funding

This project was supported by the Hong Kong Research Grants Council Collaborative Re-
search Fund C4057-18E and the Innovation and Technology Commission, Hong Kong Special
Administrative Region Government to the State Key Laboratory of Agrobiotechnology (The
Chinese University of Hong Kong). Any opinions, findings, conclusions, or recommendations
expressed in this publication do not reflect the views of the Government of the Hong Kong
Special Administrative Region or the Innovation and Technology Commission. The funders
had no role in study design, data collection and interpretation, or the decision to submit
the work for publication. KYY was additionally supported by Hong Kong Research Grants
Council Collaborative Research Funds C4015-20E, C4045-18W and C7044-19G and General
Research Funds 14170217 and 14203119, the Hong Kong Epigenomics Project (EpiHK), and
the Chinese University of Hong Kong Young Researcher Award, Outstanding Fellowship and
Project Impact Enhancement Fund. KYY is currently supported by the National Institute
of Health P30 CA030199-41, U54 AG079758-01, and R21 AG075483-01S1.

6.6 Authors’ contributions

KYY conceived the study. LL and CH developed the methods. KWL, PBSL, JW, JZ and
ASLC obtained and prepared the biological samples. JX, CYLC, TFC and FY produced the
data. LL, CH, CYLC, AKYL, DB, LC, TFC and KYY analyzed the data. LL, CH and KYY
prepared the manuscript. All authors read and approved the final version of the manuscript.

6.7 Acknowledgements

We thank Vineet Bafna, James Broach and Lijun Zhang for providing published optical
mapping data. We acknowledge the assistance of Xian Fan and Ernest Lam in running
OMIndel and Bionano Solve, respectively.

References

[1] P. Andrew Futreal, Lachlan Coin, Mhairi Marshall, Thomas Down, Timothy Hubbard,
Richard Wooster, Nazneen Rahman, and Michael R. Stratton. A census of human cancer
genes. Nature Reviews Cancer, 4(3):177–183, 2004.

[2] Yilong Li, Nicola D. Roberts, Jeremiah A. Wala, Ofer Shapira, Steven E. Schumacher,
Kiran Kumar, Ekta Khurana, Sebastian Waszak, Jan O. Korbel, James E. Haber,

18



Marcin Imielinski, PCAWG Structural Variation Working Group, Joachim Weischen-
feldt, Rameen Beroukhim, Peter J. Campbell, and PCAWG Consortium. Patterns of
somatic structural variation in human cancer genomes. Nature, 578(7793):112–121, 2020.

[3] Aaron R. Quinlan and Ira M. Hall. Characterizing complex structural variation in
germline and somatic genomes. Trends in Genetics, 28(1):43–53, 2012.

[4] Manasi Ratnaparkhe, John K. L. Wong, Pei-Chi Wei, Mario Hlevnjak, Thorsten Kolb,
Milena Simovic, Daniel Haag, Yashna Paul, Frauke Devens, Paul Northcott, David T. W.
Jones, Marcel Kool, Anna Jauch, Agata Pastorczak, Wojciech Mlynarski, Andrey Kor-
shunov, Rajiv Kumar, Susanna M. Downing, Stefan M. Pfister, Marc Zapatka, Peter J.
McKinnon, Frederick W. Alt, Peter Lichter, and Aurélie Ernst. Defective DNA dam-
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S1 Supplementary Methods

S1.1 Details of the indel pipeline

Before running COMSV pipeline to call SVs, optical mapping data of individual DNA
molecules are aligned to a reference. For all the results in this study obtained from nicking-
enzyme-based optical mapping data, molecules were aligned using OMBlast [1] (in OM-
Tools [2] v1.4a). For the results obtained from DLS, molecules were aligned using both
OMBlast and RefAligner [3] (in Bionano Solve v3.5.1), with additional details given below.
In both cases, in the alignment result, each molecule is either (fully or partially) aligned to
a single genomic location, split-aligned with different parts aligned to different locations, or
unaligned. For each aligned or split-aligned molecule, each label is either aligned to exactly
one label on the reference or unaligned.

For each aligned molecule, COMSV first corrects for potential scaling errors as follows
(Figure 1a). For every two adjacent labels on the molecule, the distance between them on
the molecule divided by the distance between the two corresponding aligned labels on the
reference is referred to as the observed-to-expected distance ratio. Each of these ratios is then
divided by the median of all the observed-to-expected distance ratios from this alignment.
For a perfectly linearized DNA molecule with all the labels correctly aligned, all these ratios
should be close to one, with the small deviations caused by measurement errors alone. For
a DNA molecule with imperfect linearization but a constant scaling factor along the whole
molecule, after this normalization, all the ratios should also be close to one. Therefore, in
both cases, if after the normalization there is a high proportion (> a%) of distance ratios
strongly deviated from one (< 1 − γ or > 1 + γ), where a and γ are user parameters,
the alignment is deemed low confident and marked for potential rejection (the whole list of
parameters of COMSV and their default values are given in Table S5).

Whereas some of these low-confidence alignments can be incorrect alignments, some others
can have abnormal distance ratios because of the presence of SVs instead. To distinguish
between these two cases, the aligned genomic locations of these low-confidence molecules
are analyzed. Specifically, all low-confidence alignments with overlapping aligned locations
are grouped. For groups with more than N alignments, they are treated as reinforcing each
other, considering the fact that the alignment of each molecule was performed independently.
For such reinforced cases, all the alignments in the group will be “rescued”, while the other
low-confidence alignments will be discarded.

The second step (Figure 1b) aims at collecting observed-to-expected distance ratios for the
identification of indels in the later steps. Since indels can have different sizes and can occur
at different locations, it would be ideal to check the distance between all pairs of labels no
matter they are adjacent or not. However, computationally this is not feasible since it would
require checking many label pairs. Instead, COMSV first starts with all pairs of labels that
are adjacent either on the reference or on at least one molecule. For each of these label pairs,
among all molecules containing both labels (according to their alignments to the reference),
if at least pd of them have an observed-to-expected distance ratio strongly deviating from
one (larger than 1+δ or smaller than 1-δ, where δ is the minimum SV ratio) and the absolute
differences are larger than smin (minimum SV size), a suspected indel case is called. All these
suspected indel regions are collected and the overlapping ones are grouped. Finally, for each
group, all the label pairs within this region, no matter adjacent or not, will be considered in
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the calculation of distance ratios.
In the third step (Figure 1c), for each pair of labels collected in the second step, their

distances on the molecules are clustered using complete-link hierarchical clustering until no
two distance values respectively from any two clusters have an absolute difference smaller than
smin or a ratio smaller than δ. Complete-link clustering is used because it is most sensitive
to large-value outliers. The resulting clusters are tight, and outliers can be easily identified.
When this clustering is finished, clusters that contain less than ns member molecules are
considered outliers and are removed. The remaining clusters go through one more round
of clustering using median-link hierarchical clustering (i.e., distance between two clusters
defined as difference between their medians), which considers the opinions of all members in
a cluster more evenly, to determine the number of clusters. Each final cluster is expected to
contain molecules that contain a specific allele of the genomic region involved.

In the fourth step (Figure 1d), the clustering result for each pair of labels is first used
to determine the SV type. Specifically, based on the number of clusters nc and the aver-
age observed-to-expected distance ratio si of each cluster i, the following rules are used to
determine the SV type:

Number of clusters Average distance ratios Conclusion
nc = 1 s1 � 1 Homozygous insertion
nc = 1 s1 ≈ 1 No SV
nc = 1 s1 � 1 Homozygous deletion
nc = 2 s1 � 1 and s2 � 1 Multi-allelic double insertion
nc = 2 s1 � 1 and s2 ≈ 1 Heterozygous insertion
nc = 2 s1 � 1 and s2 � 1 Multi-allelic insertion-deletion
nc = 2 s1 ≈ 1 and s2 � 1 Heterozygous deletion
nc = 2 s1 � 1 and s2 � 1 Multi-allelic double deletion
nc > 2 Complex SV

In these rules, a distance is considered significantly smaller than (�) or larger than (�)
a threshold if the normalized deviation is larger than smin in the respective direction.

All these initial indel-spanning regions are then grouped to identify redundant cases.
Specifically, all the indel-spanning regions are sorted according to their starting locations.
All regions that have a reciprocal overlap of >50% are linked, and finally all regions directly
or indirectly linked are grouped together. From each group, one final indel is produced with
its type and zygosity determined by a simple majority vote of all the initial indels, and
its span determined by following the indel candidate with the highest coverage (number of
aligned molecules covering the region) among all the candidates in the group. Final indels
with a coverage less than c are considered low-confidence and are discarded.

S1.2 Confidence scores of detected indels

We then trained a support vector machine model with a radial basis function (RBF) kernel
for distinguishing the correct indel calls of COMSV from the incorrect ones. Specifically,
for each indel identified by COMSV from the simulation data, we put it into one of three
possible classes by comparing it with the ground truth, namely wrong call (the indel does
not actually exist), correct call of indel location but wrong zygosity, and correct call of indel
location and zygosity. For each indel, three features were derived based on the outputs of
COMSV, namely the ratio of molecules that support the SV allele, the detected indel size, and
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the number of molecules aligned to the locus. All features were transformed to have a value
range between 0 and 1, where this was done by subtracting the minimum followed by dividing
by the maximum. Based on 10 runs of class-stratified five-fold cross-validations, the trained
model achieved an average area under the receiver-operator characteristic (AUROC) of 0.98
(stdev=0.01) in distinguishing between true and false indels (without considering zygosity).
In contrast, models that involved single features alone achieved an average AUROC of 0.84
(stdev=0.03), 0.94 (stdev=0.02), and 0.78 (stdev=0.03), with the ratio of molecules that
support the SV allele, SV size, and the number of molecules aligned to the locus, respectively.
Since the model has a prediction score for each of the three classes, these scores can also be
used to check whether it is more likely for an SV to be homozygous or heterozygous.

S1.3 Details of the complex SV pipeline

The complex SV pipeline of COMSV uses split-alignments of molecules and partially un-
aligned molecules to identify SVs. In a split-alignment, two or more segments of a molecule
are aligned to the reference non-consecutively. Depending on where the different segments
are aligned and the orientations of these individual alignments, different types of SVs are
called (Figure 1e). In general, if a molecule can provide information about one break point
of an SV but not the complete information of the whole SV, only an SV break point is called.

The exact way that SV break points and complete SVs are called depends on the SV type
(Figure 1e). For a translocation, there should be three break points in total for a complete
event, namely two break points between which a DNA segment is cut, and a third break
point at which the segment is inserted. If a molecule contains two segments split-aligned
to two regions on the same chromosome separated by at least 5Mb, two intra-chromosomal
translocation break points (marked as “-BP” in the final SV lists) are called. Specifically,
suppose a segment is aligned to region [A,B] and a later segment is aligned to region [C,D]
in the same alignment orientation, with A < B < C < D, then two break points are called
between B and C, with one expected to be close to B and the other one expected to be
close to C. The actual translocation can involve either a segment that starts near C and
ends at an unknown location after D translocated to a location near B, or a segment that
starts at an unknown location before A and ends near B translocated to a location near C.
Now, suppose after the second segment, there is a third segment on the molecule aligned to
the region [E,F ], with B < E < F < C, then a complete translocation event is reported
with a segment that starts near C and ends near D translocated to a location between B
and E. A similar logic can be used to call a complete intra-chromosomal translocation if
the third segment is before the first segment rather than after the second segment. Inter-
chromosomal translocations can also be called in a similar way, except that the translocated
segment should come from a chromosome different from the one at which it is inserted.

For an inversion, there should be two break points in total for a complete event, between
which the DNA is inverted. Suppose a segment is aligned to region [G,H] and a later segment
is aligned to region [I, J ] in the reverse alignment orientation, with G < H < I < J , then
one inversion break point is called and its location is between H and I. The inversion should
involve a segment that starts at this break point and ends at a location after J . Now,
suppose after the second segment, there is a third segment on the molecule aligned to the
region [K,L], with K > J , then a complete inversion is called with the inverted segment
starting at a location between H and I and ending at a location between J and K. In some
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cases, the inverted segment has a symmetric pattern that makes it difficult for the aligner
to detect an inversion using the split-alignment strategy. If there are clear distance changes
of the labels flanking the inverted segment, it is possible for COMSV to detect an insertion
and a deletion instead (Figure S7). To detect these cases, we collected the deletion-insertion
pairs with genomic distance less than 20kb and size difference less than 5%. These pairs are
re-considered as inversions if they concurrently appear in at least 2 molecules.

For a duplication, there should be three break points in total for a complete event, namely
two break points between which a DNA segment is duplicated, and a third break point
at which the segment is inserted. If a molecule contains two segments with their aligned
regions on the reference overlapping each other, the starting and ending locations of their
overlapped region are called as two duplication break points, where the segment duplicated
should completely enclose this region. Other parts of the molecule can help refine these break
points and identify the third break point. For example, suppose the overlapped region of the
two alignments is [O,P ], if the segment on the molecule between these two aligned segments
is aligned to region [M,N ] on the reference, where M < N < O < P , then the duplicated
region may start somewhere between N and O. On the other hand, if a later segment of the
molecule is aligned to region [Q,R] on the reference, where Q is much larger than P , then
the duplicated DNA is expected to have inserted to a location near Q.

A special case of duplications is that the whole molecule is aligned to consecutive regions
on the reference except that two adjacent segments are aligned to the same region. In this
case, a tandem duplication is called.

Finally, if different segments of a molecule are aligned to nearby genomic regions within
5Mb, an insertion or deletion will be called depending on the aligned locations of the segments.
Some of these indels may have already been identified by the indel pipeline, but some may
only be identified by this complex SV pipeline especially in the case of a large deletion, where
the different segments cannot be aligned to the reference without a split-alignment.

The complex SV pipeline of COMSV also makes use of partially aligned molecules to
identify duplications and inversions. Specifically, for each molecule that is only partially
aligned to the reference, the unaligned segment is extracted and aligned to the reference
again by itself. It may be uniquely aligned to a single region on the reference or to multiple
different regions. In the former case, if the new alignment has an orientation different from
the original aligned segment, an inversion break point or a complete inversion would be
called, and if the new alignment region overlaps the one of the original aligned segment, a
duplication would be called. On the other hand, if the alignment is not unique to a single
region and one of these aligned regions supports neither an inversion nor a duplication, no
SVs would be called.

It should be noted that in the above descriptions, break points can only be identified up
to the closest aligned label, and therefore calling a break point precisely requires both the
presence of a label (e.g., a nicking site) near the break point and a correct alignment of the
label on at least one molecule.

If there are multiple complex SV break points that support overlapping SVs of the same
type, they are grouped together to give one final break point call, with the possible range
of the break point defined in three different ways, all reported in the output file. The three
ways are: 1) taking the intersection of all the individual break point ranges, 2) taking the
minimum span that covers all the individual break point ranges, and 3) taking the break
point range with the highest molecule support. For example, for the inversion shown in
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Figure 1f, the molecules m11 and m13 propose the left break point to be within the regions
T − U and T − V , respectively, and therefore in the final call, the common region of them,
T − U , is taken as the range of the left break point.

For translocations and duplications, if the translocated/duplicated content is inverted
when inserting to the new location, the SV type is recorded as “invert-translocation” and
“invert-duplication”, respectively.

It is possible that some duplications are initially missed or identified as insertions if the
duplicated parts are not aligned in the initial alignment. To deal with these cases, COMSV
includes a module for “rescuing” unaligned segments of optical maps that have other parts
properly aligned. Specifically, for each unaligned segment of an optical map, we check whether
its label pattern matches any region on the reference near (<500kb) the aligned parts. If
≥80% of the unaligned segment can match well, a duplication would be called. Similarly, if
the reverse of the label pattern can match the reference of a nearby region well, an inversion
would be called. All SVs identified by re-alignment of initially unaligned segments are marked
as “-realigned” on the output SV list.

It is possible that some very complex types of SV appear in cancer genomes, such as
nested SVs with one SV completely enclosing another SV. These cases can be identified for
manual inspection and analysis by looking for regions with a high density of SVs identified
by COMSV.

S1.4 Customized methods for DLE-1 data

Compared to traditional optical mapping data using a nicking enzyme (such as Nt.BspQI)
for labeling, DLS data using the DLE-1 enzyme for labeling have conceptually no fragile sites
(i.e., sites easily having double-stranded breakage due to two nicks on opposite strands close
to each other). As a result, in DLS data the molecules are longer on average. There is also a
higher density of labels. These properties created difficulties for the alignment algorithms we
used (especially OMBlast), which were originally developed for nicking enzyme-based data.

To deal with this issue, COMSV integrates SVs detected from multiple sets of alignments
when working on DLS data, as follows.

Indel detection requires highly accurate alignment of individual labels. OMBlast was not
optimized for DLS data and could produce alignments with high error rates. In contrast, Re-
fAligner and Assembler in the Bionano Solve toolset have been optimized for DLS. Therefore,
for DLS data, we used two sets of alignments produced by RefAligner in our indel pipeline,
namely i) direct alignment of individual molecules to the reference, and ii) alignment of as-
sembled contigs to the reference. Since the assembled contigs already represent a form of
consensus among the individual molecules, when calling indels based on their alignments, we
did not impose the requirements for molecule alignments (N , ns, and c). For an identified SV,
if there was at least one contig that supported the reference allele, we called it a heterozygous
SV. Otherwise, we called it a homozygous SV.

To identify complex SVs from DLS data, in addition to the two types of alignments used to
detect indels, we also engaged OMBlast to do a two-round alignment of individual molecules,
which is a strategy we also used in our previous studies [4, 5]. In the first round, molecules
were aligned to the reference with the option of complex SV break points detection disabled,
such that molecules that required only simple alignments could be performed reliably, while
some molecules that required more complex alignments (such as those around SV break

S5



point regions) were either completely unaligned or had segments of them unaligned. In the
second round, all unaligned molecules and molecule segments were aligned to the reference
again, independent of the alignment results in the first round. The final complex SV callset
was produced by applying our complex SV pipeline to all alignments (these two rounds of
OMBlast alignment, RefAligner direct molecule alignment, and RefAligner contig alignment).
These three sets of SVs were then integrated by including 1) all complex SVs detected from the
RefAligner contig alignments, 2) all duplications detected from RefAligner direct molecule
alignments (because RefAligner in Bionano Solve could not generate split alignments and
thus could not be used to detect SVs such as inversions), and 3) SVs detected from OMBlast
two-round split alignments of individual molecules, except for those that required the rescue
procedure for unaligned segments as described above.

To improve the accuracy of our callset, we removed indels that overlapped any duplications
or inversions detected by the complex SV pipeline, because the confidence of local alignments
around complex SV breakpoints was generally lower and the indel pipeline was more likely
to generate false positive calls.

S1.5 Defining the overlap between an SV and another SV or a
genomic region

In various parts of this study, we had to compare the location information of an SV with
that of a simulated SV, an SV reported in a previous study, or an annotated gene.

To do that, we first needed to define the “spanning region” (or simply “span”) of an SV,
which is basically where the SV appears. Conceptually, the span of an insertion is the single
nucleotide position at which the extra DNA sequence is inserted, the span of a deletion is
the genomic region deleted, the span of an inversion is the genomic region inverted, and the
span of a duplication is the genomic region duplicated. In a translocation, a genomic region
is translocated to another region, which involves a deletion and an insertion, and thus it has
two spans. Among the two spans of a translocation, the one with a smaller starting point
(earlier chromosome, based on the order of 1, 2, ..., 22, X, Y, or same chromosome but smaller
coordinate) is called the first span and the other one is called the second span.

In all these cases, due to the nature of optical mapping, a span of an SV can only be
estimated based on the innermost pair of labels that enclose it. The region between these
two labels on the reference was the practical definition of a span used by COMSV.

Accordingly, we defined different types of overlaps that involve an SV as follows:

• For non-translocations, two SVs of the same type are considered overlapping if their
spans have reciprocal overlaps of ≥50%.

• For non-translocations, an SV is considered overlapping with a genomic region (e.g., a
gene or a gold-standard SV, which has a precise span rather than an estimated one) if
the span of the SV has an overlap with the genomic region of ≥1bp.

• Two translocations are considered overlapping if the shortest distance between their
first span is ≤500kb and the shortest distance between their second span is ≤500kb.

• A translocation is considered overlapping with a genomic region if the shortest distance
between the genomic region and either span of the translocation is ≤50kb.
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In comparisons involving SV locations, we sometimes also considered additional require-
ments, such as the size of an SV. For example, even if two insertions have the same span
(i.e., estimated insertion point), they would be different insertions if the lengths of their
inserted sequences are very different. For parts of our study that introduced such additional
requirements, the details are provided in the corresponding method descriptions separately.

S1.6 Procedures for generating simulated data

In the first simulation experiment, we generated large indels with the proportion of supporting
molecules ranging from 10% to 90% as follows. First, following the parameter settings of a
previous work [5], we simulated a list of indels on the hg38 human reference genome using
pIRS [6]. We then took the reference genome as one haplotype and the indel-added genome
as another haplotype to simulate molecules using in silico digestion to 100x average genome
coverage from each haplotype, using the same parameter settings as in a previous work [5].
Finally, molecules from these two sets were randomly sampled at different rates to produce
17 data sets, respectively corresponding to sampling 10%-90% of the molecules from the
reference haplotype and the remaining from the indel-added haplotype, with an increment
of 5% each time.

In the second simulation experiment, we first generated the genomes of normal cells, trunk
cancer cells, and cells in the two sub-clones by simulating different sets of SVs using pIRS
based on the evolution graph (Figure S2). The actual numbers of SVs generated are shown
in Table S6. We then simulated molecules for each genome to 100x average coverage. These
molecules were then sampled to form the molecules of the seven samples according to their
target cell compositions (Table S1).

The above data sets were simulated based on the Bionano Irys platform (which uses the
Nt.BspQI enzyme for labeling). To check the performance of COMSV on data produced by
the Saphyr platform (which uses the DLE-1 enzyme for labeling), we also generated simulated
optical mapping data by applying DLE-1 in silico digestion to molecules of Sample 7 in
Table S1.

S1.7 Application of the different SV callers on the simulated data

We compared COMSV with four other SV callers on the simulated data, namely the two
SV callers included in Bionano Solve v3.5.1 (regular pipeline and RVP), OMIndel, and
OMSV. For the regular Bionano Solve pipeline, the exact list of command-line arguments
used was “$BIONANOSOLVE DIR/Pipeline/1.0/pipelineCL.py -l prop${sample} -t $BIO-
NANOSOLVE DIR/RefAligner/1.0 -b $BNXPATH/${sample} -y -d -U -i 5 -F 1 -W 1 -c 1 -a
optArguments haplotype saphyr human.xml -r hg38 BSPQI 700.cmap -f 0.2 -J 48 -j 60 -jp
80 -T 80 -N 6”. We ran the RVP pipeline via the Bionano Access platform with the same
set of arguments used in the regular pipeline. For OMIndel, we tried different values of the
minimum supporting reads and picked the one that gave the highest F1 score across samples,
which was found to be 7. Default values were used for all other parameters. When zygosity
was considered, the minimum cluster size of the reference reads was set to 10, as suggested
by the author. For OMSV, we set the minimum support to 10 and the minimum likelihood
ratio to 1e4, which provided the best performance on the simulated data.
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After obtaining the callsets of the different SV callers, we compared them with the gold-
standard list of SVs after removing SVs that overlapped fragile sites, regions with no sequence
information on the reference, and pseudo-autosomal regions. A called SV was considered
correct if it overlapped with a gold-standard SV of the same type with the estimated SV size
within 5 times of the correct size. For complex SVs, we also required each called break point
to be within 20kb from a break point of the gold-standard SV. Precision, recall, and F1 score
were then computed accordingly.

S1.8 Collection of published optical mapping data

We collected published optical mapping data from several sources (Table S2). All published
cell line data with DLE-1 labeling were from a previous study [7] and kindly provided to us
by Vineet Bafna in the form of BNX files. The C666-1 data were produced in our previous
work [5] and we used the alignment files from that study directly. All other published cell
line data with Nt.BspQI labeling were produced in our previous work [8] and we took the
BNX files as our input. The published patient sample data were from a previous study [9]
and kindly provided to us by James Broach, with the help of Lijun Zhang, in the form of
BNX files.

S1.9 Production of optical mapping data from cell lines and pri-
mary samples

The two immortalized human liver cell lines, Huh7 and LO2, were maintained in Dulbecco’s
modified Eagle’s medium (Gibco) with 10% FBS (HyClone). All cells were cultured at 37◦C
in a humidified chamber containing 5% CO2.

A HCC patient who underwent hepatectomy at the Prince of Wales Hospital (Hong Kong)
was included in this study. The specimen was processed immediately after surgery and snap-
frozen in liquid nitrogen for DNA extraction. The patient gave written consent on the use
of specimen for research purposes. The study protocol was approved by the Joint Chinese
University of Hong Kong-New Territories East Cluster Clinical Research Ethics Committee.

High molecular weight (HMW) genomic DNA was extracted from Huh7 and LO2 cells
using Bionano PrepTM Blood and Cell Culture DNA (Part no. 80004; Bionano Genomics,
USA) with the Cell Culture Protocol (Document no. 30026 Rev F), and from 261T us-
ing Bionano Prep Animal Tissue DNA Isolation Kit (Part no. 80002) (Bionano Genomics,
USA) with the Soft Tissue Protocol (Document no. 30077 Rev C). In detail, cell suspen-
sion was obtained by resuspending cell line pellets or homogenized solid tumor sample in
1X phosphate-buffered saline (PBS) buffer solution. Cell suspension was then embedded in
low-melting agarose gel plugs and treated with protease K and RNase A. The gel piece was
then molten with heat and agarose. HMW DNA was recovered from the molten gel via drop
dialysis, and fluorescently labelled to generate sequence motif-specific patterns following the
Bionano DLS protocol (Document no. 30206 Rev F). Optical mapping data were generated
on the Bionano Saphyr system (Part no. 60325) using Saphyr Chip G1.2 (Part no. 20319). In
brief, fluorescently labeled HMW DNA molecules were automatically stretched and imaged
within nanochannel arrays. Distances between labels were calculated from the images into
raw molecule maps and de novo assembled into consensus maps by Bionano Access v1.4.2
and Bionano Tools v1.4.1.
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S1.10 A non-redundant list of SVs identified from the real samples

For each real sample, COMSV produced a final list of SVs identified from it with various
types of annotations, such as SV type, zygosity, ranges of genomic locations of the break
points, and proportion of aligned molecules supporting the SV allele. Following our previous
work [4], we excluded several classes of genomic regions from SV calling that make molecule
alignment erroneous or even impossible (Supplementary File 3), including 1) regions with low
density of Nt.BspQI or DLE-1 labels, defined as regions ≥100kb with ≤5 labels, 2) regions
with unresolved sequences in the reference (“N” regions) ≥50kb, 3) centromeres, and 4)
pseudo-autosomal regions. We also excluded the Y chromosome.

To annotate the genes that overlap each SV, we downloaded the latest release (release
43) of comprehensive human gene annotation from GENCODE [10] in GTF format (https://
ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_43/gencode.v43.annotation.

gtf.gz). We considered only annotations on chromosomes 1-22, X, and Y. We annotated
each SV by all the genes that it overlapped, including both coding genes and non-coding
genes. For each gene, we listed the Ensembl gene ID, gene name, and gene type. For SVs
that spanned ≥5Mb, which may overlap many genes, we did not include their gene annota-
tions.

Besides, we also integrated the SV lists from individual samples to produce an overall list
of non-redundant SVs identified from all samples. To do that, we considered one SV type
at a time. We collected all SVs of that type identified from all samples. For an SV type
other than translocations, overlapping SVs (as defined above) were put into the same group.
This was done in a transitive manner, such that if the first and second SVs were grouped,
the second and third SVs were grouped, and so on, until the k-th and (k + 1)-th SVs were
grouped, all (k + 1) SVs would all be grouped together. Each group was then represented
by the SV in it that had the smallest genomic span. Due to this process of merging SVs
across samples, in the final list of non-redundant SVs, we omitted annotations that required
sample-specific information, such as zygosity and proportion of aligned molecules supporting
the SV allele, but instead recorded whether a sample contained an original SV belonging to
each group. We also simplified SV type annotations since the more specific types could be
present in only some samples. For example, an “invert-duplication” (a duplication with the
duplicated part inverted) was simply recorded as the more general “duplication” type.

Translocations were merged in a way slightly different from the other SV types due to
their complexities. Conceptually, each translocation involves “cutting” a genomic region
out and “pasting” it somewhere else. In practice, optical mapping data usually can only
provide information about break points, by having different segments of a molecule aligned
to different separated regions on the reference, without complete translocation information.
Therefore, usually two different regions are identified to be involved in a translocation, but
which one corresponds to the “cut” site and which to the “paste” site is not known. Because
of this, when merging translocations called from different samples, both regions need to be
considered. Two translocations were grouped only if both their first spans overlapped and
their second spans overlapped. Procedure-wise, we sorted translocations based on their two
spans’ genomic locations, followed by grouping translocations with both spans overlapping
using the transitive rule described above. Finally, for each set of merged translocation break
points, it was considered not called from a sample if there are ≤4 molecules supporting it in
the sample.
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SV break points detected for which the complete SV could not be determined were marked
as “-BP” in the output files.

S1.11 Identifying SVs called by COMSV from the real samples
that were reported in previous studies

We collected multiple sets of SVs from different sources to check whether the SVs called by
COMSV from the real samples were also reported in some previous studies.

Two SV sets were from general populations. The first set included SVs larger than 2kb in
size identified from 156 samples across 26 human populations using optical DNA mapping [4].
The second set was the NCBI Curated Common Structural Variants in dbVar [11], available
at https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd186/. These two sets together
covered SVs of different sizes identified across various human populations.

SVs larger than 1kb in size previously identified from cancer samples were collected from
the latest open Pan-Cancer Analysis of Whole Genomes (PCAWG) consensus callsets for
structural variants [12], available at https://dcc.icgc.org/releases/PCAWG/consensus_

sv. This database contained SVs from 2,588 cancer samples, each annotated with a cancer
type. For samples with multiple SV files, we merged them into a single SV list for each
sample. We omitted 190 samples that were not annotated with a cancer type.

Finally, for some specific samples, we collected previously reported SVs (from the supple-
mentary materials of corresponding publications) larger than 1kb in size that were identified
using non-optical mapping methods (Table S7). Again, for each sample with multiple lists
of SVs, we merged them into a single list.

Based on these SV sets, we classified each SV identified by COMSV into one of five
possible classes (Figure S4). If an SV was reported in either of the two general population
SV sets (by having overlapping locations, the same type, and size ratio within [1/5, 5] with
any known SV in the population sets for indels, or having the same type with any known
SV as well as all breakpoints located within 10kb of that known SV in the population sets
for complex SVs), we classified the SV as being found in the general population. Otherwise,
we checked if the SV was reported by PCAWG. If it was, then we further checked whether it
was reported in at least one cancer type other than the cancer type of our sample, in which
case the SV was classified as being found in multiple cancer types, or else it was classified
as being found in a specific cancer type. If the SV was not reported by PCAWG, then we
further checked the SVs previously reported from this same sample, if available, to classify
the SV as sample-specific (and previously reported) or novel.

S2 Supplementary materials

S2.1 Supplementary tables
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Sample 1 2 3 4 5 6 7
Normal cells 100× 0× 0× 0× 20× 20× 40×
Trunk cancer cells 0× 100× 0× 0× 80× 50× 20×
Cancer sub-clone 1 cells 0× 0× 100× 0× 0× 30× 20×
Cancer sub-clone 2 cells 0× 0× 0× 100× 0× 0× 20×

Table S1: Cell type composition of the different samples in the second simulation experiment.
For each sample, the amount of optical maps produced from each cell type in terms of average
genome coverage is shown.

Sample Type Organ/tissue State Labeling Data source Number of
molecules

aligned

Average
length of

aligned
molecules (bp)

A549 Cell line Lung Cancer (adenocarcinoma) Nt.BspQI [8] 654,790 233,733
C666-1 Cell line Nasopharynx Cancer (nasopharyngeal carcinoma) Nt.BspQI [5] 843,123 244,074
Caki2 Cell line Kidney Cancer (clear cell carcinoma) Nt.BspQI [8] 570,985 253,025
Caki2 Cell line Kidney Cancer (clear cell carcinoma) DLE-1 [7] 2,424,944 297,000
Huh7 Cell line Liver Cancer (hepatocellular carcinoma) DLE-1 This study 1,629,774 269,006
K562 Cell line Blood Cancer (chronic myelogenous leukemia) Nt.BspQI [8] 654,569 260,717
K562 Cell line Blood Cancer (chronic myelogenous leukemia) DLE-1 [7] 2,035,576 297,915
LNCaP Cell line Prostate Cancer (adenocarcinoma) Nt.BspQI [8] 586,712 245,513
LNCaP Cell line Prostate Cancer (adenocarcinoma) DLE-1 [7] 1,550,011 298,291
LO2 Cell line Liver Non-cancer DLE-1 This study 1,802,745 240,815
NCI-H460 Cell line Lung Cancer (non-small cell carcinoma) Nt.BspQI [8] 693,391 234,121
NCI-H460 Cell line Lung Cancer (non-small cell carcinoma) DLE-1 [7] 1,755,220 305,155
PANC-1 Cell line Pancreas Cancer (pancreatic carcinoma) Nt.BspQI [8] 502,557 246,440
SK-N-MC Cell line Adrenal glands Cancer (neuroblastoma) Nt.BspQI [8] 1,097,849 250,155
SK-BR-3 Cell line Breast Cancer (adenocarcinoma) DLE-1 [7] 2,356,988 310,497
T47D Cell line Breast Cancer (ductal carcinoma) Nt.BspQI [8] 738,468 298,548
T47D Cell line Breast Cancer (ductal carcinoma) DLE-1 [7] 2,048,956 295,377
261T Patient sample Liver Cancer (hepatocellular carcinoma) DLE-1 This study 1,545,556 216,254
3096 Patient sample Bladder Cancer DLE-1 [9] 1,950,385 354,979
3717 Patient sample Thyroid Cancer (anaplastic carcinoma) DLE-1 [9] 2,023,467 363,756
7052 Patient sample Tongue Cancer (squamous cell carcinoma) DLE-1 [9] 2,051,159 346,126
7052 Patient sample Blood Non-cancer DLE-1 [9] 1,897,051 313,543
7403 Patient sample Tongue Cancer (squamous cell carcinoma) DLE-1 [9] 1,966,708 334,900
7403 Patient sample Blood Non-cancer DLE-1 [9] 1,181,812 348,413
7518 Patient sample Thyroid Cancer (anaplastic carcinoma) DLE-1 [9] 2,147,760 314,234
7528 Patient sample Tongue Cancer (squamous cell carcinoma) DLE-1 [9] 1,434,288 368,872
7528 Patient sample Blood Non-cancer DLE-1 [9] 2,150,859 320,253
7622 Patient sample Tongue Cancer (squamous cell carcinoma) DLE-1 [9] 1,660,765 390,182
7622 Patient sample Blood Non-cancer DLE-1 [9] 2,290,781 262,175
7708 Patient sample Thyroid Cancer (anaplastic carcinoma) DLE-1 [9] 1,422,898 393,706
10974 Patient sample Liver Cancer (hepatocellular carcinoma) DLE-1 [9] 2,171,181 337,681
14369 Patient sample Lung Cancer (pleomorphic carcinoma) DLE-1 [9] 2,095,861 353,533

Table S2: Optical mapping data of human samples included in this study.
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Sample General pop-
ulations

General can-
cer (multiple
types)

General can-
cer (specific
type)

Sample-
specific

Novel Total

A549 677 (55.36%) 86 (7.03%) 5 (0.41%) 3 (0.25%) 452 (36.96%) 1,223
C666-1 1,053 (92.86%) 4 (0.35%) 0 (0%) 1 (0.09%) 76 (6.70%) 1,134
Caki2 Nt.BspQI 699 (70.89%) 88 (8.92%) 0 (0%) 7 (0.71%) 192 (19.47%) 986
Caki2 DLE-1 1,797 (71.17%) 86 (3.41%) 1 (0.04%) 53 (2.10%) 588 (23.29%) 2,525
Huh7 1,635 (81.83%) 12 (0.60%) 1 (0.05%) NA 350 (17.52%) 1,998
K562 Nt.BspQI 984 (66.40%) 186 (12.55%) 0 (0%) 14 (0.94%) 298 (20.11%) 1,482
K562 DLE-1 1,805 (78.24%) 28 (1.21%) 0 (0%) 50 (2.17%) 424 (18.38%) 2,307
LNCaP Nt.BspQI 463 (53.53%) 27 (3.12%) 0 (0%) 3 (0.35%) 372 (43.01%) 865
LNCaP DLE-1 1,916 (77.57%) 77 (3.12%) 3 (0.12%) 29 (1.17%) 445 (18.02%) 2,470
LO2 1,803 (78.94%) 42 (1.84%) 4 (0.18%) NA 435 (19.05%) 2,284
NCI-H460 Nt.BspQI 771 (67.10%) 65 (5.66%) 4 (0.35%) 5 (0.44%) 304 (26.46%) 1,149
NCI-H460 DLE-1 1,738 (78.08%) 54 (2.43%) 3 (0.13%) 31 (1.39%) 400 (17.97%) 2,226
PANC-1 651 (58.65%) 57 (5.14%) 3 (0.27%) 4 (0.36%) 395 (35.59%) 1,110
SK-N-MC 1,220 (54.32%) 316 (14.07%) 0 (0%) 8 (0.36%) 702 (31.26%) 2,246
SK-BR-3 1,781 (72.11%) 40 (1.62%) 7 (0.28%) 75 (3.04%) 567 (22.96%) 2,470
T47D Nt.BspQI 1,188 (67.85%) 153 (8.74%) 16 (0.91%) 15 (0.86%) 379 (21.64%) 1,751
T47D DLE-1 1,675 (74.58%) 44 (1.96%) 8 (0.36%) 43 (1.91%) 476 (21.19%) 2,246
261T 1,636 (87.21%) 15 (0.80%) 2 (0.11%) NA 223 (11.89%) 1,876
3096 1,758 (83.40%) 5 (0.24%) 0 (0%) NA 345 (16.37%) 2,108
3717 1,809 (81.52%) 9 (0.41%) 0 (0%) NA 401 (18.07%) 2,219
7052 Cancer 1,768 (80.04%) 15 (0.68%) 0 (0%) NA 426 (19.28%) 2,209
7052 Non-cancer 1,704 (88.43%) 10 (0.52%) 0 (0%) NA 213 (11.05%) 1,927
7403 Cancer 1,752 (82.88%) 9 (0.43%) 0 (0%) NA 353 (16.70%) 2,114
7403 Non-cancer 1,757 (88.38%) 10 (0.50%) 0 (0%) NA 221 (11.12%) 1,988
7518 1,759 (82.93%) 15 (0.71%) 0 (0%) NA 347 (16.36%) 2,121
7528 Cancer 1,812 (84.28%) 13 (0.60%) 0 (0%) NA 325 (15.12%) 2,150
7528 Non-cancer 1,810 (88.34%) 16 (0.78%) 0 (0%) NA 223 (10.88%) 2,049
7622 Cancer 1,773 (82.01%) 7 (0.32%) 0 (0%) NA 382 (17.67%) 2,162
7622 Non-cancer 1,729 (84.42%) 11 (0.54%) 0 (0%) NA 308 (15.04%) 2,048
7708 1,736 (84.64%) 6 (0.29%) 0 (0%) NA 309 (15.07%) 2,051
10974 1,780 (75.39%) 22 (0.93%) 1 (0.04%) NA 558 (23.63%) 2,361
14369 1,748 (76.30%) 16 (0.70%) 1 (0.04%) NA 526 (22.96%) 2,291
Shuffle DLE-1 6,172 (13.71%) 3,640 (8.08%) NA NA 35,213 (78.21%) 45,025
Shuffle Nt.BspQI 2,131 (22.17%) 1,349 (14.03%) NA NA 6,134 (63.80%) 9,614

Table S3: Numbers of SVs called from the human samples that overlapped with other SV call
sets. For non-cancer samples, cancer-type-specific comparisons were performed based on the
organ/tissue type. For samples without SV call sets previously obtained from non-OM data,
their sample-specific overlap numbers are marked as “NA”. Translocations were excluded
from the random sets because they cover two separate genomic spans instead of one.
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7052 Cancer 7052 Non-cancer 7403 Cancer 7403 Non-cancer 7528 Cancer 7528 Non-cancer 7622 Cancer 7622 Non-cancer
7052 Cancer - 84.01% 63.03% 61.13% 62.66% 60.16% 61.41% 57.02%
7052 Non-cancer 86.76% - 64.25% 63.47% 64.25% 62.45% 63.28% 59.17%
7403 Cancer 63.17% 62.75% - 85.29% 62.89% 60.80% 62.98% 58.99%
7403 Non-cancer 64.84% 64.89% 89.25% - 64.99% 64.01% 64.79% 62.50%
7528 Cancer 62.82% 62.91% 62.96% 61.64% - 83.46% 62.82% 59.80%
7528 Non-cancer 66.19% 66.80% 65.94% 66.24% 90.03% - 66.24% 65.49%
7622 Cancer 59.45% 59.41% 60.58% 58.91% 60.09% 58.27% - 77.23%
7622 Non-cancer 63.12% 63.80% 65.52% 65.36% 65.67% 66.40% 88.59% -

Table S4: Overlap of the SVs identified from the tongue squamous cell carcinoma samples and
matched blood samples from the same patients. Each entry is the number of SVs commonly
called from the two samples corresponding to the row and the column of the entry divided
by the sample corresponding to the row, i.e. xij = |Si ∩ Sj|/|Si|, where xij is the entry in
the i-th row and the j-th column of the table, Si and Sj are the SV lists of the i-th and j-th
samples, respectively, and |S| denotes the number of SVs in the set S. The largest value in
each row is underlined.

Parameter Description Default value
a Maximum percentage of observed-to-expected distance

ratios strongly deviated from one for high-confidence
alignments

75

γ Parameter for defining an observed-to-expected distance
ratio to be strongly deviated from one

max(δ, smin/dref )

N Minimum number of alignments to form a reinforcement
group

5

pd Minimum percentage of alignments with distance ratios
strongly deviated from one for calling a suspected indel
case

10

δ Minimum ratio of distance change to support an indel 0.05
smin Minimum size of an indel 2,000bp
ns Minimum size for a cluster to be retained 3
c Minimum number of aligned optical maps covering an

indel region
10

Table S5: List of parameters of COMSV and their default values. The order of the parameters
follows their descriptions in the Materials and Methods section. dref denotes the distance of
the reference allele.

Genome Missing / Small Large Inversions Duplications pCNVs Translocations
Extra sites indels indels

(Size range) (1bp-100bp) (5kb-50kb) (50kb-500kb) (50kb-500kb) (150kb-1.5Mb) (150kb-1.5Mb)
Normal 5,840 295,405 1,196 81 82 0 0
Trunk cancer 11,588 472,703 2,307 238 213 24 36
Sub-clone 1 17,170 615,213 2,636 270 269 36 74
Sub-clone 2 17,151 614,277 2,601 269 262 27 82

Table S6: Numbers of small and large variations introduced to each genome of the second sim-
ulation experiment. Missing/Extra sites are damaged/novel labels caused by single nucleotide
variations. pCNV: copy number variations due to large dissociative molecule fragments that
cause polyploidy in cells.
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Cell line Short Reads 10x linked-reads Hi-C Other data
A549 [8] NA [8] NA
C666-1 [5] NA NA NA
Caki2 [8] NA [8] [8]
K562 [8] NA [8] [8]
LNCaP [8] NA [8] NA
NCI-H460 [8] NA [8] NA
PANC-1 [8] NA [8] NA
SK-N-MC [8] NA [8] NA
SK-BR-3 [13] [13] NA [13]
T47D [8] NA [8] [8]

Table S7: Sources of previously reported SVs identified from samples involved in this study
using non-optical mapping data. Other data include PCR amplifications and the detection
of SV-induced fusion genes based on RNA-seq. NA: not available

Data set Sample Number of SVs identified by COMSV that
were reportedly using other technologies

A549 A549 159
C666-1 C666-1 240
Caki2 DLE-1 Caki2 544
Caki2 Nt.BspQI Caki2 199
K562 DLE-1 K562 480
K562 Nt.BspQI K562 255
LNCaP DLE-1 LNCaP 539
LNCaP Nt.BspQI LNCaP 175
NCI-H460 DLE-1 NCI-H460 495
NCI-H460 Nt.BspQI NCI-H460 233
PANC-1 PANC-1 195
SK-N-MC SK-N-MC 1,029
SK-BR-3 SK-BR-3 302
T47D DLE-1 T47D 442
T47D Nt.BspQI T47D 318

Table S8: Number of intra-chromosomal SVs identified by COMSV that were also reported
previously by using other technologies as described in Table S7.
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S2.2 Supplementary figures
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Figure S1: Comparisons between the performance of COMSV and three existing SV calling
methods based on simulated data with a varying proportion of supporting optical maps at
the SV loci. Precision (a, b), recall (c, d) and F1 score (e, f) of the different methods
when the zygosity of the SVs are ignored (a, c, e) or considered (b, d, f) by the performance
measures.
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Figure S2: The evolution of cells in the second simulation experiment. Based on the human
reference, a first set of SVs (V1) were generated to create the genome of the normal cells.
A second set of SVs (V2) were then generated to create the genome of trunk cancer cells.
While the trunk cancer cells continued to evolve with a small additional set of SVs (V ′2), two
cancer sub-clones were evolved with their own sets of SVs (V3 and V4, respectively). The
final sets of SVs contained in the genomes of the normal cells, trunk cancer cells, cells in
the first sub-clone and cells in the second sub-clone are denoted as VN , VCP , VCS1 and VCS2 ,
respectively.
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Figure S3: Comparisons between the performance of COMSV and other existing SV calling
methods based on simulated data with different cell compositions, with the correct opti-
cal map alignments supplied as inputs. a-d For each type of SVs, including deletions (a),
insertions (b), inversions (c) and duplications (d), the performance of each method when
applied to the homogeneous cell samples with one cell type per sample (Samples 1-4) and
the heterogeneous cell samples with multiple cell types per sample (Samples 5-7) is shown.
Since Bionano Solve could not be run with optical map alignments supplied as inputs, it was
omitted from these comparisons.
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Figure S4: Classification of SVs identified from the real samples based on supports provided
by independent data.
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Figure S5: Supporting evidence for a complex SV-containing contig. The alignment between
the reference (red bars), optical map contig (thick yellow bar) and individual optical map
molecules (thin yellow bars) are shown for the region highlighted in a box with dashed-
line boundaries in Figure 6d. Aligned segments (1-4) are numbered in the same way as in
Figure 6d.
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Figure S6: A duplication identified from Nt.BspQI data but not DLE-1 data. The duplica-
tion, identified from LNCaP, displays a pattern (highlighted by the blue boxes) that repeats
three times in Nt.BspQI data. DLE-1 labels are completely missing in this region.

DelIns

Inversion

Incorrect alignment

Correct alignment

Figure S7: Illustration of a situation that leads to missed call of inversions. The upper part
show the correct alignment of the labels on a molecule (yellow bar) with those on a reference
(black bar), which should support an inversion. However, due to the symmetric pattern of
the labels in the inverted region, the actual alignment produced can be the one shown in the
lower part, which instead supports an insertion and a deletion.

S19



S2.3 Supplementary files

Supplementary File 1: List of SVs identified from individual human samples
Supplementary File 2: Unified list of non-redundant novel SVs identified from the different

human samples
Supplementary File 3: Lists of genomic regions excluded from SV calling
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