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Abstract 
 
Pathways are integral to systems biology. Their classical representation has proven useful but is 
inconsistent in the meaning assigned to each arrow (or edge) and inadvertently implies the 
isolation of one pathway from another. Conversely, modern high-throughput experiments give 
rise to standardized networks facilitating topological calculations. Combining these perspectives, 
we can embed classical pathways within large-scale networks and thus demonstrate the crosstalk 
between them. As more diverse types of high-throughput data become available, we can 
effectively merge both perspectives, embedding pathways simultaneously in multiple networks. 
However, the original problem still remains – the current edge representation is inadequate to 
accurately convey all the information in pathways. Therefore, we suggest that a standardized, 
well-defined, edge ontology is necessary and propose a prototype here, as a starting point for 
reaching this goal.
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Uniting classical pathways and modern networks  
In biology, a pathway refers to a sequence of reactions, usually controlled and catalyzed by 
enzymes, by which one organic substance is converted to another. Biological pathways are an 
important component of systems biology. The classical representation of these pathways 
provides varied, mechanistic associations between many proteins. Conversely, modern high-
throughput experiments and large-scale databases have given rise to standardized networks that 
provide a somewhat different perspective on pathways. Combining and comparing these 
perspectives, classical biochemical pathways can be embedded into large-scale networks. This 
reveals a number of problematic issues with classical pathways: First, the same pathways 
documented in different databases are often inconsistent in components included and their exact 
symbolic representation (e.g., what each of the arrows means). Second, pathways are isolated 
from one another in classical representations, de-emphasizing crosstalk. In contrast, embedded 
pathways offer completely uniform representations and relate network statistics, such as average 
degree or diameter, consistently to pathways. However, they are more limited in the richness of 
the mechanistic biochemistry that they can convey. As more diverse types of high-throughput 
data become available, it will be possible to embed classical pathways simultaneously in many 
large-scale networks, effectively merging both approaches. To accomplish this, a precise edge 
(or arrow) ontology needs to be defined. For illustrative purposes, we propose a prototype of 
ontology which provides an unambiguous representation of the edges connecting biomolecules 
and also describes higher-level relationships amongst these edges. We then demonstrate the 
usefulness of the simple edge ontology on four diverse types of pathways. We do not intend to 
provide a complete ontology here, but rather to stimulate people working in this field to continue 
building upon existing knowledge until a complete ontology is achieved. 
 
Pathway databases and limitations 
During the last decade, an increasing number of pathway databases have been established in 
order to document the ever-expanding knowledge concerning established pathways. Some of 
these pathway databases are organism specific. For example, EcoCyc[1] describes the genome 
and the biochemical machinery of E. coli K12 MG1655. A few other pathway databases focus on 
a specific type of disease or disorder, such as The Cancer Cell Map (http://cancer.cellmap.org) or 
GOLD.db[2]. The majority of these pathway databases cover a certain functional area that occurs 
in multiple organisms. Furthermore, such databases can often be roughly divided into three 
categories: those containing metabolic pathways (KEGG[3], WIT[4], BioCyc[5], MetaCyc[6], 
and GenMAPP[7]); those containing signal transduction (signaling) pathway (BioCarta 
(http://biocarta.com), STKE (http://stke.org), Pathways Knowledge Base (http://ingenuity.com), 
and Reactome[8]); and those containing both (KEGG, BioCarta and Reactome). Excellent recent 
reviews on these pathway databases can be found elsewhere [9, 10]. 
 
Although the above-mentioned databases provide valuable resources for studying the 
associations between proteins, they are hampered by several limitations. First of all, the same 
pathways documented in different databases are often inconsistent. In many cases, a pathway is 
described by including a few core components first. The decision of whether to include 
additional components in the given pathway is usually empirically determined, based on the 
expert curators’ knowledge and experience. Therefore, the boundary of a pathway is usually 
vague. The consequence is that the number of components in the same pathway in different 
databases varies greatly (Table S1 and Figure 4a). 
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Second, these pathways are isolated in classical representations. This is the consequence of the 
traditional reductionist approaches to molecular biology, whereby genes and pathways are 
investigated as isolated entities. However, from the perspective of modern systems biology, the 
interactions between biological pathways must be studied in order to understand how biological 
systems function. On the systems level, the crosstalk between pathways appears to be 
particularly important but lack significant study. Although there have been efforts to integrate 
them, such as in the Boehringer Mannheim Biochemical Pathways wall chart, many aspects of 
the relationships between pathways have yet to be systematically identified and incorporated.  
 
Third, the classical representations of pathways use symbols that lack a precise definition. The 
same symbol is often used to represent a variety of functions. For example, arrows are used to 
represent direct interactions in some circumstances, but in others, they are also used to represent 
translocation to a different sub-cellular compartment. Although this might not cause problems 
for laboratories focusing on individual pathways, these notations must be precisely defined in 
order to perform analyses on pathways on a larger scale. A structured vocabulary or ontology of 
these symbols should be developed to ameliorate this problem. 
 
Recent advent of network biology 
A particularly novel concept in the post-genomic era is the idea that a living cell can be viewed 
as a complex network of biomolecules. Indeed a biomolecular network can now be rendered as a 
collection of nodes and edges. Nodes represent biomolecules, such as proteins, genes and 
metabolites, while edges represent the types of associations between two nodes, such as physical 
interactions and co-expression of mRNAs. The combined functions and interactions between 
these networks constitute the behavior of the cell. Mapping and understanding biomolecular 
networks represents the first step towards modeling how a cell actually operates.  
 
As a result of recent genome-wide high-throughput (HTP) experiments, including large-scale 
yeast two-hybrid screens and microarray experiments, many types of networks have been 
mapped, including protein-protein interaction (PPI), expression, regulatory, metabolic and 
signaling networks. For example, protein-protein interaction networks have been experimentally 
determined in Saccharomyces cerevisiae[11-15], Caenorhabditis elegans[16], Drosophila 
melonogaster[17], Homo sapiens[18, 19], Plasmodium falciparum[20] and Helicobacter 
pylori[21]. The availability of such well-mapped networks has allowed us to compare and 
contrast them in terms of global and local topology, as well as, to relate the structural properties 
of these networks to protein properties, such as function and essentiality.  
 
Topological analysis of networks provides quantitative insight into their basic organization. 
Different network statistics have been designed to capture the characteristics of network 
topology (Table S2). Despite the seemingly vast differences between biomolecular networks, 
they are found to share common features with respect to network topology. Barabási et al. [22] 
proposed a “scale-free” model in which the degree distribution in many large networks follows a 
power-law distribution [ ]. What is remarkable about this distribution is that while 
most of the nodes within these networks have very few links, a few of these nodes, classified as 
hubs, are exceptionally well-connected. Concurrently, Watts and Strogatz[23] found that many 
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networks also have a “small-world” property, meaning they are defined as being both highly 
clustered and containing small characteristic path lengths.  
 
Network analysis has provided quantitative new insights into protein properties, cellular 
dynamics and other biological problems. For example, research has shown that hubs in a network 
are more likely to be essential proteins, as well as prompted debate about whether hubs tend to 
evolve slower [24-26]. Furthermore, different motifs have been implicated in different stages of 
dynamic transitions of a network[27].  
 
Comparisons between classical and embedded pathways  
One can construct large-scale networks using different types of data from HTP experiments: 
protein-protein interaction networks from yeast two-hybrid screens, and co-expression networks 
from micro-array experiments provide apt examples of this. For each classical pathway, we can 
extract the corresponding sub-network from the entire network by mapping the core components 
in this classical pathway onto the network of biomolecules. From a network point of view, this 
mapping can also be viewed as embedding pathway components into the network. To 
differentiate from the classical pathways, we refer to these sub-networks as embedded pathways 
(Figure 1). The core components of a classical or embedded pathway are defined as the 
biomolecules in the KEGG pathway diagram. KEGG is used in this article because of its high 
quality among pathway databases, as pointed out by Wittig et al. [28].  
 
We will use the Notch pathway as an example to illustrate our findings because of its elegance 
and simplicity. The Notch signaling pathway is a highly conserved pathway for cell-cell 
communication. It is involved in the regulation of cellular differentiation and proliferation. As 
shown in Figure 1, we constructed core and extended embedded pathways by collecting the 22 
core protein components listed in KEGG and mapping them onto the large-scale PPI network 
deposited in the Human Protein Reference Database (HPRD)[29]. The HPRD interactions are 
manually curated by expert biologists to reduce errors.  
 
Comparisons between classical and core embedded Notch pathways reveal a number of 
differences. First, the classical pathway contains directed and undirected edges (Figure 2a). 
Directed edges often represent activations, such as the edge between Delta and Notch. They also 
represent translocation to a different cellular compartment, for example, the edge between Notch 
and NICD. Undirected edges often represent an interaction between two components, such as the 
edge between CSL and SKIP. In contrast, the edges between components in the embedded 
pathway are uniform (Figure 2b). In this case, they are protein-protein interactions. Although the 
edge representation in the core embedded pathway is more consistent, it loses information 
encoded in classical pathways. 
 
Second, although most of the edges are common between both representations, some edges 
appear only in one representation. The core embedded pathway also reveals 12 new interactions 
that are not found in the KEGG classical pathway. Conversely, there are two edges that exist in 
KEGG, but are not present in the core embedded pathway. They are between Notch and DVL 
and between Notch and TACE suggesting either that the protein-protein interaction map is 
incomplete or that these interactions take place through an intermediate (Figure 2a, b).  
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Compared to the classical pathway, the core embedded pathway has two advantages: First, the 
core embedded pathway is able to suggest which isoform is responsible for an interaction. For 
example, in the interaction between Notch and Numb, the embedded pathway identifies that 
Notch1 (Entrez ID: 4851) but not the other three isoforms interacts with Numb (Figure 2c). In 
contrast, the current version of the classical pathway collapses multiple protein isoforms into one 
single node. 
 
Second, extended embedded pathways can systematically suggest new components involved in 
classical pathways. The extended embedded Notch pathway identifies 218 new proteins that are 
potentially involved in the Notch pathway by extracting the immediate interacting partners of 
these core components (Figure 2d). It is increasingly evident that the Notch pathway is subject to 
a wide array of regulatory influences, from those that affect ligand-receptor interactions to those 
that govern the choice of Notch target genes [30, 31].  
 
For example, the classical Notch pathway in KEGG shows that Dishevelled (DVL) inhibits 
Notch. In the HTP networks, we find that Notch and DVL do not interact directly, but through an 
intermediate protein between them, namely, glycogen synthase kinase 3β (GSK-3β). DVL and 
GSK-3β are known to be involved in the Wnt pathway. The interaction of Wnt with the Frizzled 
receptor results in the inhibition of GSK-3β, by means of DVL[32]. The relationship between 
GSK-3β and Notch has been found by Espinosa et al. [33]. Specifically, they report that GSK-3β 
is able to phosphorylate Notch2 protein both in vitro and in vivo. Their paper suggests that GSK-
3β may be partially accounted for by crosstalk between Wnt and Notch pathways. 
 
Despite the above-mentioned advantages, the embedded pathway suffers significant information 
loss by restricting the edges to describing physical interaction. One way to circumvent this 
problem would be to overlay additional types of large-scale data onto the network by defining 
different types of edges. For example, it has been found that Notch down-regulates PSEN. This 
interaction is particularly interesting because PSEN is a component of the γ-secretase complex 
which cleaves Notch’s intracellular domain, triggering the rest of the pathway. By laying the 
regulatory network on top of the protein-protein interactions, this feedback loop is highlighted 
[34]. 
 
Relating network properties in embedded pathways 
Because of the heterogeneity of the edges and the incomplete nature of classical pathways, it is 
difficult to relate the mathematical quantities of modern network biology to these pathways. 
However, the same task becomes straightforward when applied to the embedded pathways 
created by mapping the core components of classical pathways onto large-scale networks. We 
provide an illustrative example in the supplemental materials showing how the topological 
quantities in modern network biology can lead to new insights into biochemical pathways. We 
found that signaling pathways from metabolic pathways have significantly different network 
topologies (Tables S3 and Figure S1). This difference has allowed us to successfully differentiate 
signaling pathways from metabolic pathways. 
 
It is also interesting to note that the topological quantities between two of the same type 
pathways (signaling or metabolic) can be different even when they contain a similar number of 
core components, as illustrated by Notch vs. Hedgehog extended embedded pathways in Figure 3, 
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Do these differences reveal anything about the underlying mechanisms of Notch and Hedgehog? 
First, we must consider it is possible that these differences are merely artifacts; that is, the 
protein interaction network is incomplete, and as the map expands, such differences will 
disappear. While certainly plausible, an alternative explanation is that these differences reflect 
real biological differences. This may be explained by the different regulatory mechanisms used 
by the two pathways. For example, Notch pathway might be subject to a larger degree of 
regulatory influences. Indeed, while our analysis suggests that while the core components of 
Notch embedded pathway have about 21 interacting partners on average, those of Hedgehog 
embedded pathway have just about 7 (Figure 3).  
 
In addition to global inferences, topological measures can be used to identify nodes of particular 
importance or function. For instance, hubs (nodes of high degree) in regulatory networks 
correspond to master regulators [35]. Conversely, bottlenecks (nodes of high betweenness) often 
correspond to nodes that act as important information conduits, particularly in directed networks 
such as metabolic networks (in which metabolites flow between nodes) or signaling networks (in 
which information in the form of activations flows between nodes) [36]. Furthermore, these 
nodes most likely act as connectors between pathways, thereby mediating crosstalk (see below). 
Likewise, one can identify essential regulators by searching for composite hubs (i.e., nodes that 
have a high degree both in the metabolic and signaling network [37]). One can imagine using a 
combination of different statistics across many different networks in order to identify a number 
of key nodes. As our knowledge increasingly covers the different types of networks, an 
unambiguous and rigorous definition of protein function will eventually emerge from a 
combination of topological measures and network position [38]. That is, the importance of a 
protein is not only defined by its classical biochemical function, but also its position in the 
network. For example, hubs in Notch pathway include the HDACs, CREBBP, EP300, and DVL2; 
all of these nodes play a critical role in the regulation of the pathway. Furthermore, AXIN1 is a 
bottleneck in both the Hedgehog and the Wnt pathways, suggesting its importance for the 
information flow both within and between these pathways.  
 
Examining crosstalk between embedded pathways 
In living organisms, pathways are not isolated entities. From a systems biology perspective, 
pathways are linked together through crosstalk to perform biological functions as a system. In 
biology, the term crosstalk refers to the phenomenon that signal components in signal 
transduction can be shared between different signaling pathways, and responses to a signal-
inducing condition (e.g., stress) can activate multiple responses in the cell or organism. This 
crosstalk can be exemplified by a particular protein, Protein Kinase C (PKC), which is shared by 
MAPK, Calcium, Phosphatidylinositol, Wnt, and VEGF signaling pathways. However, since 
classical pathways only contain core components, they are insufficient to study crosstalk. This is 
evidenced by the low overlaps between classical pathways, which serve as an indicator of the 
extent of crosstalk between them (Figure 4 and Table S4). In contrast, embedded pathways 
provide an excellent platform to examine crosstalk, since components of pathways are essentially 
embedded within a bigger network which allows systematic identification of overlapping and 
linking components. 
 
Figure 4 and Table S4 show the overlaps between embedded pathways that correspond to 
signaling pathways in humans. We examine the overlaps between core, as well as, extended 
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embedded pathways. The larger the overlap between embedded pathways, the more crosstalk 
takes place between the two pathways. Although most of the core embedded pathways do not 
overlap significantly, the corresponding extended embedded pathways often show a significant 
increase in overlap (Table S4). These results suggest that a large number of proteins exist as 
liaison components between pathways, and all of the signaling pathways can be connected with 
one degree of separation at most. A careful examination of these intermediate proteins may be 
useful in unraveling the mechanisms by which different pathways are related to each other.  
 
Developing a simple version of edge ontology for pathways 
As we mentioned before, classical pathway representation is often ambiguous, using the same 
symbol to represent different functions. In the post-genomic era, this problem is further 
confounded by the emergence of various types of high-throughput data. Different types of high-
throughput data reveal different relationships between pathway components. In addition to 
protein-protein interaction networks, the core components of a pathway can also be mapped onto 
other types of networks, such as gene expression and regulatory networks. Simple edges and 
arrows that are traditionally used in the classical pathway representation may not be sufficient to 
meet the challenges of integrating these heterogeneous datasets. In order to perform large-scale 
mining of pathways, a precise edge or arrow ontology must be developed to represent different 
types of relationships between pathway components.  
 
To make things more complicated, a large number of pathway databases are currently available 
[9, 39]. Unfortunately, they typically do not share data models, file formats or access method. To 
foster sharing of these different information sources, several eXtensible Markup Language 
(XML) exchange formats have been developed. System Biology Markup Language (SBML) [40] 
and CellML [41] focus mainly on quantitatively simulating concentrations of pathway 
components. The Proteomic Standards Initiative’s Molecular Interaction (PSI-MI) [42] is an 
exchange format for molecular interaction, and the Biological Pathway Exchange (BioPAX) [43] 
is a more general format used to describe biological pathways. 
 
Much effort has been devoted towards developing consistent representation of pathways; 
however, most of these efforts focus on enumerating diverse types of edges. BioPAX has been 
developing an ontology of interactions that reveals relationships between edges. In order to 
perform large-scale mining of pathways, making explicit the relationships between edges is an 
important step for elucidating the transitions and reactions between molecules. A precise edge or 
arrow ontology may also help improve pathway representation by highlighting both different 
types of relationships between pathway components and our level of knowledge in that 
relationship. 
 
As an example, phosphorylation, unbiquitination, glycosylation and methylation can all be 
viewed as types of reactions by transferring “tags” to target proteins. Thus an ontology of edges 
which not only enumerates different types of edges but also classifies the edges into groups 
should be developed to capture this information. This explicit hierarchy of relationships can be 
exploited to enable accurate computational analysis without losing the expressiveness of the 
classical representation. For example, some pathway interactions can be represented by specific 
symbols, such as serine phosphorylation. However, translation to a more general interaction, 
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such as “tagging” that leads to activation, can be employed to perform high-level analysis of the 
pathway or to compare multiple pathways represented at a different level of specification. 
 
Here, we propose a simple version of edge ontology to illustrate how we could deal with this 
issue in the future. This ontology provides both an unambiguous definition of the interactions 
and defines a hierarchy of those interactions. In particular, the hierarchy of interactions may be 
useful to obtain multiple views of a pathway, from a general one to a more specific one. It also 
contains symbols that may help the graphical representation of interactions. Please note this 
ontology is far from complete. We foresee that the formidable goal of constructing a complete 
ontology for pathways would take multiple groups many years to achieve. However, this simple 
ontology could be used as a starting point, upon which we hope a complete ontology can be built. 
We also realize that a consistent representation of nodes is equally important; however, this 
problem can be largely solved by using Gene Ontology[44]. The Gene Ontology (GO) provides a 
controlled vocabulary to describe gene and gene product attributes in any organism, and hence 
could be used as a rough node ontology. Below, we will only focus on edge ontology.  
 
Table 1 shows the edge ontology. We use different shapes, symbols, and colors to represent 
diverse types of interactions between pathway components. We also define a simple hierarchy of 
interactions from general ones to more specific ones. The first level divides directed from 
undirected interactions whereas, the second level highlights the main mechanisms of interaction, 
which are in turn defined in more detail in the third level. The fourth level further specifies some 
of the interaction types. The edges in the second level have different shapes, while in the third 
level they are represented by different colors. Further specifications can be defined by adding 
annotations on the edge, such as those in the fourth level. Nearly all the edges connect two 
components of the pathways, such as proteins and molecules, except that the “catalysis” edge 
connects a pathway component to a “chemical reaction” edge. This allows us to properly 
describe metabolic pathways which typically display a sequence of chemical reactions in which 
enzymes take part.  
 
As an example, a black arrow is used to indicate a “tagging” interaction, meaning an interaction 
that binds a molecule to a pathway component. If we know the type of interaction in more detail, 
different colors can be used to describe different “tagging” mechanisms: red for phosphorylation, 
blue for ubiquitination, and so on. In many cases, however, the tagging mechanism activates 
proteins; to highlight that some tagging mechanisms may inhibit proteins, a solid vertical line is 
used instead of the arrow shape. To further specify the relationship with more details, an 
annotation on the edge can be used, such as serine phosphorylation and N-linked glycosylation. 
It is worth noting that symbols from different levels can be used concurrently in the same 
pathway. This may be used as a way to emphasize our level of understanding of the interaction. 
 
For illustration purposes only, we provide four examples of the application of this edge ontology. 
We consider the Notch pathway, the Citric acid cycle, the JAK-STAT signaling pathway and the 
Caspase cascade pathway. We redraw the classical pathways according to our new edge ontology 
in Figure 5. 
  
Concluding remarks 
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While classical representations of biochemical pathways can provide an in-depth view of isolated 
sets of genes, the network approach is capable of analyzing pathways on three different levels: 
whole system (crosstalk), whole network, and individual nodes. While embedding pathways to 
large-scale protein-protein interaction networks allows us to easily compare properties across, 
between, and within pathways, we also experience significant information loss. One way to 
circumvent this problem would be to overlay additional types of high-throughput data onto the 
pathway by defining different types of edges.  
 
In order to properly analyze this type of multilayered network, a precise edge ontology must be 
defined. The edge ontology should provide an unambiguous representation of the relationships 
between biomolecules, as well as reveal relationships between edges. However, even a well-
defined edge ontology still suffers the limitation of lacking explicit temporal information. 
Properly incorporating explicit temporal information will be the next grand challenge in the 
representation of pathways. 
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Figure 1. Illustration of a classical and an embedded pathway.  
 
Through their exposure to them in textbooks, biochemists are probably most familiar with the 
classical representation of a pathway, where the reactions and interactions involved are 
represented as a flow in a typically linear fashion from the input to the output. In contrast, the 
more recent phenomenon of showing pathways in a systems biology fashion results in a 
representation as an embedded pathway. In this instance, the interaction between components is 
not necessarily linear and components potentially involved with, but outside the immediate 
pathway can also be shown. 
 
In classical pathways, the edges are added according to expert curators’ knowledge, whereas in 
the embedded pathways, the edges are mapped according to data from high-throughput 
experiments such as yeast two-hybrid screens of protein-protein interactions, or large-scale 
databases. In this illustrative example, a core embedded pathway contains the same set of core 
components as in the classical pathway (A to E, light blue nodes), as well as the edges linking 
them together. However, the extended embedded pathway also contains the immediate nodes 
(yellow) that are linked to the core components. Please note, we have intentionally drawn 
different numbers of edges among the light blue nodes to emphasize the potential for differences 
between classical and embedded pathways to occur. In this instance, for example, A is shown to 
interact with E in the embedded pathway whereas no such interaction is shown in the classical 
pathway. This is because A does not inhibit or cause E to perform a chemical reaction and 
therefore, no representation of this is required in the classical pathway. However, the interaction 
in the embedded pathway could indicate that A acts as a scaffold for E in the pathway but does 
not necessarily imply that it causes E to perform a reaction.  
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Figure 2. Comparisons of Classical and Embedded Representation of the Notch signaling 
pathway. This figure highlights the differences between these two representations and thus 
demonstrates how embedding classical pathways into large-scale networks might be able to 
generate new insights. 
 
In all cases, white boxes refer to reference pathway elements not present in the Human Protein 
Reference Database (HPRD). Light blue boxes are core components in HPRD while yellow 
nodes are the extended components mapped from HPRD. 
A) Notch signaling pathway as illustrated in KEGG. It contains both directed and undirected 
edges, and exactly the same type of edge is often assigned multiple meanings. Directed edges 
often represent activations, such as the edge between Delta and Notch. They also represent 
translocation to a different cellular compartment, for example, the edge between Notch and 
NICD. 
B) Notch pathway mapped onto interaction networks. The red edges between components are 
uniform, all representing protein-protein interactions between the core (light blue boxes) 
components. 
C) Multiple nodes in the embedded Notch pathway. Different colors are used to differentiate the 
interactions between isoforms. Blue lines are used to represent the interactions between Notch 1 
and its interacting partners, red lines represent the interactions between Notch 2 and its 
interacting partners, and so on. 
D) First neighbors of Notch pathway proteins. Light blue nodes represent the core components of 
Notch pathway, and yellow nodes represent their interacting proteins. Red edges connect 
interactions between core components while black lines connect interactions between core and 
extended components. 
A) 
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B) 

 
 
C)  

 
 
D)  
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Figure 3. Differences in the topology of Notch (a) and Hedgehog (b) embedded signaling 
pathways.  
 
The (a) Notch and (b) Hedgehog networks were constructed from HPRD data and the 
corresponding statistics are listed in the table (c). Light blue nodes represent the core 
components of pathways, and yellow nodes represent their interacting proteins. Although Notch 
and Hedgehog embedded pathways have a comparable number of core proteins (36 vs. 38), they 
have vastly different topologies. In this case, the clustering coefficient (C), degree (K), and 
betweenness (B). Values are all significantly higher in the Notch pathway (red) than in the 
Hedgehog pathway. Note, K, C and B are statistical parameters used to measure network 
topologies (see Table S2 for full definitions). 
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Figure 4. Overlaps between core and extended embedded pathways. 
This figure shows how embedded pathways can provide insights on pathway crosstalk. 
 
A) Discrepancy between the number of core components in KEGG and BioCarta. B) The light 
blue nodes represent core pathways as illustrated in Figure 1a. Light blue lines connect two core 
pathways with significant overlaps (p-value ≤ 0.01). The yellow nodes and lines (Figure 1b) 
represent the extended pathways and the significant overlaps between extended pathways.  

 

 18



Figure 5. Biochemical pathways redrawn using the new edge ontology.  
 
The following illustrates how we propose pathways can be redrawn in a more representative fashion using our 
proposed new edge ontology. Four different types of pathway are shown to highlight how more information can be 
conveyed by a more descriptive ontology. In particular, compare (a) below with Figure 2a. In this case, for example, 
the interaction between TACE and Notch is more clearly seen to be a cleavage reaction in (a) below, whereas in 
Figure 2a, we are unable to tell what type of biochemical interaction occurs between TACE and Notch.  
 
Note, we have used solid ellipses to enclose complexes, and that the complexes are also linked by solid lines to 
indicate known physical interactions. In other contexts, different lines can be used given our uncertainty in the types 
of actual association.  
(a) Notch signaling pathway: Fringe is shown to activate Notch through glycosylation (pink thick arrow). Delta and 
Serrate have opposite effects: one activating (black thick arrow) and the other inhibiting (black line with bar ending) 
Notch, respectively. TACE catalyzes the cleavage (black bar with diamond ending) of Notch receptor. We 
consistently use binding edges among the components of the complex made by PSE2, PSEN, NCSTN, and APH-1 
(black solid lines). The Notch intra-cellular domain (NICD) translocates (black thin arrow) into the nucleus and 
promotes transcription in combination with CSL, MAML, and HATs. 
 
(b) Citric acid Cycle: The ‘catalysis’ edge connects an enzyme to a “chemical reaction” edge. 
The main chemicals that take part in the interactions are represented by dashed ellipses. 
In the ellipse that includes IDH3A, IDH3B and IDH3G, we found direct interactions between 
each protein pair. However, in the case one does not know the specific type of interactions 
involved in a complex, such as in the complexes arising from TAP-tagging experiments, we 
could use “Association” or “Binding or Association” defined in the edge ontology to represent 
the pairwise relationship between proteins in this complex. 
 
(c) Caspase cascade: This pathway involves mainly cleavage interactions among caspases, 
enzymes that cleave other proteins after an aspartic acid residue. 
 
(d) Jak-STAT signaling pathway: below is a portion of the pathway, including the response to 
Interleukin 2 and 3 (ILK2 and ILK3). JAKs bind to interleukin receptors and are activated by the 
binding of the ligand (black thick arrow). JAK1 and JAK3 activate STAT5 by phosphorylation 
(red thick arrow), which translocates (black thin arrow) to the nucleus and activates transcription 
of its target genes (black edge). Tyrosine phosphatase (PTPN6) inhibits the cytokine receptor and 
JAK1 through de-phosphorylation (green line with bar ending). JAK1 and JAK3 activate another 
protein tyrosine phosphatase (PTPN11), which is bound to GRB and SOS-1. This complex 
activates the MAPK signaling pathway. 
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Table 1. A Prototype of an Edge Ontology.  

 
1   describes “inhibition” (where applicable) 
2 

ser
describes serine inhibition. A similarly annotated symbol can be used for tyrosine inhibition, etc. 

3 Double arrow describes reversible chemical reactions 
4 “Binding” describes direct physical interaction. “Association” describes two proteins that are linked in the same 
complex but do not directly physically interact. “Binding or association” describes the common scenario that arises 
in TAP-tagging experiments when one does not know the specific type of interaction. 
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