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Enhancers are important cis-regulatory elements that play critical roles in a wide range of 

cellular processes by enhancing expression of target genes through promoter-enhancer loops. 

There are many interesting biological questions about enhancers, including their evolution 

and the relationships between their dysregulation and genetic diseases. The recent 

developments of experimental methods such as high-throughput reporter assays and 

ChIA-PET have enabled large-scale identification of enhancers and their targets. However, 

the current lists of identified enhancers and enhancer targets remain incomplete and unreliable 

due to the high noise level or low resolution of these methods. As a result, computational 

methods have emerged as an alternative for predicting the genomic locations of enhancers and 

their target genes. These methods have used a variety of features for predicting enhancers, 

including sequence motifs and epigenomic modifications. Potential enhancer targets have 

been predicted using activity correlations, distance constraints, and other features. Both 

prediction tasks are non-trivial due to cell-type specificity of enhancer activities, lack of 

definite orientation and distance of an enhancer from its target genes, insufficient known 

examples for training computational models, and other complexities. In this survey, we 

discuss the current computational methods for these two prediction tasks and analyze their 

pros and cons. We also point out obstacles of computational prediction of enhancers and 

enhancer targets in general, and suggest future research directions. 

 

 

Introduction 

 

Enhancers are important transcriptional regulatory DNA elements that can enhance 

transcription of target genes by recruiting transcription factors (TFs), which bring an enhancer 

close to the promoter of its target gene and trigger interactions with RNA polymerase II. 

 

Strong sequence conservation at a non-coding region is a strong indicator of a potential 

enhancer (Pennacchio et al. 2006), especially when conservation is measured in ways related 

to the function, such as clustering or protein binding sites (Berman et al. 2004). Active 

enhancers are usually enriched in the histone mark H3K27ac, while both active and poised 

enhancers are enriched in H3K4me1, and latent enhancers lack these marks in general 

(Shlyueva et al. 2014). A typical enhancer is several hundred base pairs long as defined by 

transcription factor binding signals, while much longer enhancers called super-enhancers, 

which are bound by the Mediator complex and master transcription factors, have been found 

to be important in the control of cell identity (Whyte et al. 2013; Hnisz et al. 2013). 

 



Previous studies have uncovered that enhancer dysregulation could cause abnormal gene 

expression and lead to genetic diseases (Carroll 2008; Visel et al. 2009; Dawson & 

Kouzarides 2012; Shlyueva et al. 2014), making enhancers an important study topic of both 

conceptual and practical values. Understanding the sophisticated operational mechanisms of 

enhancers has become a crucial part towards a complete understanding of the landscape of 

gene regulation. 

 

In this chapter, we describe computational methods for identifying enhancers and their targets. 

We start with a brief introduction to current experimental approaches to these two tasks, 

based on which we discuss their main limitations and introduce computational methods as a 

key alternative. We then discuss the states-of-the-art in computational enhancer prediction, 

from the features used to both unsupervised and supervised methods. We next discuss 

computational methods for predicting enhancer-target promoter associations. Finally, we 

conclude the chapter and discuss future research directions on these two problems. 

 

 

Introduction to current experimental approaches to testing enhancer activities and 

enhancer-target associations 

 

Enhancers can be tested experimentally by different kinds of reporter assays (Shlyueva et al. 

2014; ENCODE Project Consortium et al. 2012; Kwasnieski et al. 2014), including in vivo 

systems such as embryos of transgenic mice (Visel et al. 2007). To scale up reporter assays 

for testing many enhancers at the same time, high-throughput multiplexed reporter assays 

have been developed (Kwasnieski et al. 2012; Melnikov et al. 2012; Patwardhan et al. 2012; 

Sharon et al. 2012). These methods have been applied to test previously predicted enhancers. 

For example, a recent study (Kwasnieski et al. 2014) has tested human enhancers predicted by 

the ENCODE consortium (ENCODE Project Consortium et al. 2012), and found that around 

26% of these enhancer predictions have regulatory activities in the K562 cell line. 

 

Another high-throughput method that can test the enhancer activities of millions of candidates 

simultaneously is STARR-seq (Arnold et al. 2013). The main novelty of this method is 

placing each enhancer to be tested downstream of the reporter gene, such that the enhancer 

sequence itself becomes part of the resulting RNA transcript. Standard RNA-sequencing 

(RNA-seq) can then be applied to measure quantitatively the activity of each enhancer by 

counting the number of reads containing the enhancer sequence. 

 

A common limitation of these methods is that they do not preserve the whole native context 

of the predicted enhancers. For example, if an enhancer is predicted to be active in a context 

(cell/tissue type, development stage, disease state, etc.) but is tested in another context or even 

in another species, the chromatin state around the enhancer could be different, the TFs that 

bind the enhancer may not be expressed, and the genome structure required for 

enhancer-promoter looping could be altered. This means an enhancer that could be active in 

certain contexts may not show activities in a reporter assay, and even if it shows activities in a 

reporter assay, in which natural contexts it would be active is still unknown. 



 

It is also important to note that these high-throughput experimental methods have been mainly 

used for testing enhancer candidates already defined by some other means, but not for 

discovering enhancers ab initio. In theory it should be possible to tile a major portion of a 

genome for testing the enhancer activities of the involved genomic regions using these 

high-throughput experimental methods. Such large-scale datasets are remained to be seen. 

 

Many experimental approaches to enhancer-promoter association predictions rely on 

techniques that can capture chromosome conformations based on chromosome conformation 

capture (3C) (Dekker et al. 2002). There are many extended versions of 3C, such as 

circularized chromosome conformation capture (4C) (Zhao et al. 2006), chromosome 

conformation capture carbon copy (5C) (Dostie et al. 2006), genome-wide chromosome 

conformation capture (Hi-C) (Lieberman-Aiden et al. 2009) and chromatin interaction 

analysis with paired-end tag sequencing (ChIA-PET) (Fullwood et al. 2009). Hi-C and 

ChIA-PET have facilitated whole-genome identification of DNA regions that are in close 

proximity in the three-dimensional genome structure but are not necessarily adjacent to each 

other in the primary DNA sequence, without requiring an input set of candidates. Among 

these two techniques, ChIA-PET further requires that a chosen factor, such as RNA 

polymerase II, is involved in the DNA contacts. If a promoter and a predicted enhancer are 

found to interact based on these chromosome conformation data, the promoter would be 

predicted as a target of the enhancer. 

 

In order to study enhancer-promoter contacts, the chromosome conformation data need to 

have a very high (<10kb) resolution. Correspondingly, a large amount of sequencing data 

needs to be produced to ensure statistical stability at such a high data resolution, since the 

contact map matrix could be very sparse and unstable without sufficient data. Several recent 

studies have used Hi-C and ChIA-PET to study DNA contacts in human cell lines at sub-10kb 

resolutions (Jin et al. 2013; Heidari et al. 2014; Rao et al. 2014). These studies represent the 

current states-of-the-art in studying DNA long-range interactions. 

 

While high-throughput chromosome conformation data have provided various insights about 

enhancer-promoter associations, they are still unable to comprehensively and accurately 

determine the targets of all enhancers for a number of reasons. First, having a physical 

interaction does not necessarily imply a functional relationship. In particular, many DNA 

contacts observed in Hi-C data may not be relevant to promoter-enhancer interactions 

(Shlyueva et al. 2014). Second, these high-throughput data could be noisy and are subject to 

different types of bias (DeMare et al. 2013; Duan et al. 2010; Li et al. 2010). Third, 

enhancer-promoter associations are also context-specific, and thus experimental data from a 

given context may not be relevant to other contexts. 

 

Due to these limitations of current experimental approaches, the numbers of experimentally 

proven enhancers and enhancer-target associations are still limited, both in general and in 

particular contexts. As a result, computational methods have been widely used as an 

alternative in identifying enhancers and their targets. The advantage of using computational 



methods is that they can utilize different types of available data to make predictions in an 

inexpensive way as compared to their experimental counterparts. In the past 15 years, many 

computational methods have been proposed, using ideas and data ever more advanced. The 

last few years have seen a rapid adaptation of high-throughput data originally generated not 

specifically for studying enhancers in these methods. As of today, both computational 

enhancer prediction and enhancer target prediction are still very active areas of research with 

new discoveries being constantly published. 

 

 

Difficulties in computational predictions of enhancer and enhancer-promoter associations 

 

Before going into the details of these computational methods, we first discuss the difficulties 

of the corresponding problems that explain the continuous need for better methods. These 

difficulties lie in several aspects, mainly related to the intrinsic properties of enhancers and 

the lack of high-confidence examples of experimentally validated enhancers and enhancer 

targets. 

 

First, there is no simple rule governing the relative location of an enhancer from a gene that it 

targets. It can be positioned either upstream or downstream of the transcription start site (TSS) 

of its target gene. It can reside in an intergenic region, an intron, or even an exon of another 

gene. It can be as close as ten kilobases or as far as hundreds of kilobases or more from the 

target promoter. A recent study has suggested that the median distance between enhancers 

and their target promoters is 124kb (Jin et al. 2013). All these flexibility in enhancer location 

makes them much harder to identify than some other types of sequence elements, such as 

promoters, which are right upstream of the target genes. 

 

Second, up to now, no single features or combinations of features have been found that can 

perfectly locate enhancers or determine enhancer-promoter associations (Shlyueva et al. 

2014). The different features used by existing computational methods all have their pros and 

cons, which we will discuss in detail in the next section. 

 

Third, enhancer activities and enhancer-promoter associations are both context specific. A 

recent study that analyzed data from twelve human cell lines has suggested that among the 

two, enhancer-promoter associations have relatively stronger cell type specificity (He et al. 

2014). Context-specificity implies that computational methods using static features that do 

not change with the context, such as DNA sequence patterns, can only predict whether a 

genomic region could be an enhancer but not the contexts in which it is active, and only 

whether an enhancer could target a gene, but not the contexts in which the enhancer actually 

regulates the gene. This property implies that computational methods need to incorporate 

information from the context of interest in their predictions (Yip et al. 2013). 

 

Fourth, enhancers and promoters could associate with each other in a multiple-to-multiple 

manner. In other words, one enhancer can target multiple promoters and one promoter can be 

targeted by multiple enhancers (He et al. 2014). As a result, some standard computational 



methods that deal with one object at a time may not be suitable for predicting enhancers and 

enhancer targets. 

 

Lastly, the lack of comprehensive lists of experimentally tested enhancers and enhancer 

targets means that there are limited examples for computational methods to reference. Some 

computational methods, especially those based on machine learning, require adequate positive 

and negative examples for modeling the general features of enhancers and enhancer targets. 

As a result, different studies have used a variety of ways to define “gold-standard” enhancers 

and enhancer targets for training their methods. A lot of these “gold-standard” examples are 

either not experimentally tested, or are taken from another context that may not be relevant to 

the context of interest. The devoid of experimentally tested examples also means that 

computational predictions cannot be easily validated without performing additional 

experiments. 

 

Owing to all these difficulties, computational methods should be considered a supplement to 

experimental methods rather than a replacement. Computational predictions of existing 

methods all need to be experimentally tested to confirm their correctness. 

 

 

Computational methods for enhancer prediction 

 

The problem of computational prediction of enhancers is defined as follows. Given a set of 

genomic regions, each of which is described by a set of features, the goal is to identify the 

regions that correspond to enhancers based on the features. 

 

This definition requires an input list of genomic regions the status of which (enhancer or 

non-enhancer) is to be predicted. In many cases, one only wants to predict an approximate 

location of each enhancer, in which case it is common to divide the whole genome into bins 

of a fixed size, and predict whether each bin overlaps an enhancer or not. On the other hand, 

if the predicted enhancers are to be tested experimentally, it is necessary to make sure that an 

enhancer candidate includes the core part of the enhancer, such as the TF binding sites 

(TFBSs). In this scenario, the raw predictions need to be further refined. 

 

Many computational methods have been proposed for this prediction task. They differ from 

each other by the features they use and the way the features are used to make the predictions. 

In the followings, we first describe the features considered by different enhancer prediction 

methods, and then move on to discuss these methods themselves. 

 

 

Features used in enhancer prediction 

 

Many types of features have been considered in predicting enhancers (Table 1and Figure 1). 

Before the boom of high-throughput sequencing data that probe different types of features 

related to enhancers in a context-specific manner, researchers predicted cis-regulatory 



modules (CRMs), enhancers included, largely based on evolutionary conservation and 

sequence motifs (Su et al. 2010). Evolutionary conservation signifies regions with functional 

importance. Non-coding regions, including intergenic regions and introns, with unexpectedly 

strong evolutionary conservation could be CRMs. On the other hand, some functionally 

conserved enhancers do not have high sequence conservation (Su et al. 2010; Meireles-Filho 

& Stark 2009). This could indicate that conservation is not sufficient for identifying 

enhancers, or that the way to measure conservation needs to be improved (Berman et al. 

2004). 

 

Regions with a good match to a sequence motif could be binding sites of the TF. Excluding 

binding sites at annotated regions such as promoters, the remaining could be CRMs, 

especially for regions with a high density of motif matches (Su et al. 2010). Since TF binding 

also depends on factors other than the sequence, sequence motifs can be considered a weak 

feature for enhancer prediction. 

 

As discussed above, using these static features to predict enhancers could at best identify 

regions with a potential to be an enhancer, without telling the contexts in which the enhancers 

are actually active. It is also hard to use conservation and sequence motifs alone to distinguish 

enhancers from other types of regulatory elements such as silencers and insulators without a 

thorough understanding of the factors that bind these different types of elements. 

 

Later on, the development of ChIP-seq (Park 2009) made it easy to measure DNA-binding 

affinity of transcription factors genome-wide (Bailey & MacHanick 2012). Compared to 

sequence motifs, the TFBSs identified by ChIP-seq are directly measured in the context of 

interest. They were thus used to predict enhancers in a context specific manner (Yip et al. 

2012). Again, some of these binding sites may correspond to other types of functional 

enhancers (Shlyueva et al. 2014; Li et al. 2008). Moreover, there is a limited number of TFs 

with ChIP-seq data available, making it impossible to rely on ChIP-seq data alone to identify 

all TFBSs for enhancer prediction. Standard ChIP-seq data also have limited data resolution. 

This problem has been tackled by a new method called ChIP-exo (Rhee & Pugh 2011; Rhee 

& Pugh 2012), which provides close to single nucleotide precision of TFBSs by 

enzymatically digesting unbound portions of the pulled-down DNA. 

 

ChIP-seq experiments were also used extensively in studying various types of histone 

modifications (HMs) at whole-genome scales. Some HMs were found to be highly related to 

enhancers, including H3K4me1 that marks both poised and active enhancers, and H3K27ac 

that marks active enhancers (Rada-Iglesias et al. 2011). These HMs provide a way to 

distinguish enhancers from other types of regulatory elements, such as promoters, which are 

marked by H3K4me3. On the other hand, while H3K4me1 and H3K27ac have been 

well-recognized as important enhancer marks, there has not been a consensus as to whether 

they are sufficient or necessary for identifying active enhancers. For instance, a recent study 

has found that H3K4me3 (as a negative feature for enhancers), H3K4me1 and H3K4me2 are 

the top three HMs for enhancer prediction while H3K27ac was not selected as one of the most 

important predictors (Rajagopal et al. 2013), although H3K27ac is widely used in many other 



studies as an indicator of active enhancers. Some previous studies have also shown that no 

single types of HM or a combination of several HMs could predict enhancers perfectly 

(Arnold et al. 2013), and some active enhancers do not have typical active marks (Bonn et al. 

2012). Despite these complications, HMs still represent a cost-effective set of features in 

identifying context-specific enhancers, in that only a small set of ChIP-seq experiments are 

sufficient for identifying a fairly accurate set of active enhancers in a context. 

 

Pushing this idea further is to use one single context-specific feature in identifying enhancers. 

One popular choice is chromatin accessibility as measured by DNase I hypersensitivity using 

DNase-Seq (Boyle et al. 2008) or FAIRE-Seq (Giresi et al. 2007). These data indicate 

genomic regions with high accessibility of chromatin where DNA sequences are depleted of 

nucleosomes, which signify functional activities of these regions. Active enhancers were 

found to overlap with DNase hypersensitive sites (DHSs), but obviously not all highly 

accessible genomic regions are enhancers. Chromatin accessibility data can thus be used to 

limit the search space of active enhancers to only the DHSs, and let the precise locations be 

identified with the help of other features such as TF sequence motifs. 

 

Recently, it has been discovered that active enhancers produce short (<2kb) non-coding 

RNAs called eRNAs in a bi-directional manner (Kim et al. 2010). Based on this idea, a recent 

study has identified enhancers as regions with some bi-directional transcription patterns 

(Andersson et al. 2014), according to the abundant CAGE-based TSS data from FANTOM5 

(FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al. 2014). Currently, 

knowledge about eRNAs, including their functional mechanisms, is still limited. It is not yet 

clear whether active enhancers must produce eRNAs, and whether genomic regions 

producing eRNA-like RNAs must be enhancers. Nevertheless, the idea of using eRNAs to 

identify enhancers has become popular due to the wide availability of transcriptome data. 

 

Less popularly, some studies have attempted to use DNA methylation level to predict 

enhancers (Aran et al. 2013). The role of DNA methylation in marking repressed promoters 

has long been recognized. Many inactive genomic regions are also marked by DNA 

methylation. Due to the diverse types of regions marked by DNA methylation, data about 

DNA methylation in a single context can hardly be used to identify enhancers. However, if 

two contexts are being compared (e.g., tumor vs. normal tissue), sites with differential DNA 

methylation could have differential activities in the two contexts, and some of them could 

correspond to functional elements such as enhancers. Currently, the degree of enhancer 

activities reflected by their DNA methylation levels is still unknown. The roles of different 

types of DNA methylation, such as 5-mC and 5-hmC (Xu et al. 2011), in regulating enhancer 

activities are also unclear. 

 

Some studies have used correlation information between enhancer candidates and promoters 

to predict enhancers (Thurman et al. 2012). The main idea is that some activity indicators of 

enhancers (such as H3K27ac) are believed to correlate strongly with the transcription of their 

target genes across multiple contexts. If a non-promoter genomic region is found to exhibit 

such a correlation with a gene, the region could be an enhancer that regulates the gene. This 



idea is also commonly used in identifying enhancer targets. It has some limitations as we will 

discuss later. 

 

Table 1 summaries the features used in current computational methods for enhancer 

predictions discussed above. A detailed discussion on the pros and cons of some of these 

features in identifying enhancers from the perspective of biological experiments can be found 

in a recently published review (Shlyueva et al. 2014). 

 

It should be noted that there are some additional enhancer features that have been more 

commonly used to define “gold-standard” enhancers instead of being used in the prediction 

process. For example, previous studies have shown that a large fraction of the binding sites of 

transcriptional co-activator proteins P300 and CBP are enhancers (Blow et al. 2010; May et al. 

2011; Ramos et al. 2010). As a result, they have been used in some studies to define 

gold-standard enhancers (He et al. 2014; Rajagopal et al. 2013). One likely reason that 

binding sites of these proteins have not been as popularly used as enhancer predictors is that 

they are found in only a subset of active enhancers. This means although their presence 

stronger indicates an enhancer, using them as the only features could lead to a lot of false 

negatives. 

 

Table 1. A summary of features used in computational enhancer prediction 

Feature Advantages Potential drawbacks 

TF binding motifs Widely available Presence of a motif does not guarantee 

binding of a TF in a given context; 

A TF could bind regions without a 

canonical sequence motif; 

Many TFBSs are not within enhancers 

Evolutionary 

conservation 

Widely available Some functional enhancers do not 

have high sequence-level 

conservation; 

Cannot distinguish between different 

types of conserved DNA elements; 

Does not provide context-specific 

information 

TFBSs based on 

ChIP-seq or 

ChIP-exo 

Directly measured from the 

context of interest 

Many TFBSs are not within 

enhancers; 

Requires many ChIP-seq experiments 

to obtain a comprehensive list of 

binding sites for many TFs 

HMs Provides information about 

both poised and active 

enhancers; 

There are both positive and 

negative HMs for 

enhancers; 

No single HMs or their combinations 

have been found to correlate perfectly 

with enhancer activities 



Only a small number of 

ChIP-seq experiments is 

needed for each context 

Chromatin 

accessibility 

Only a single type of 

features is required for each 

context 

Regions with high chromatin 

accessibility do not necessarily 

correspond to enhancers 

eRNA One of the most accurate 

single features for enhancer 

prediction; 

Transcriptome data are 

widely available 

The detailed mechanisms of eRNA 

remain to be explored; 

Active enhancers may not produce 

eRNAs; 

Regions producing eRNA-like RNAs 

may not be enhancers; 

Many produced RNA-seq data are 

poly-A enriched, which may not 

contain eRNA signals 

DNA methylation Provides complementary 

information to the other 

features 

Quantitative relationship between 

enhancer methylation and target gene 

expression is still unclear; 

Different types of DNA methylation 

may play different roles in enhancer 

regulation 

 

Figure 1. Features used in computational enhancer prediction. The left part of the figure shows 

features of active enhancers while the right part shows the corresponding features of inactive 

enhancers, other regulatory elements (such as promoters), or other genomic regions. 
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Unsupervised methods for enhancer prediction 

 

Many computational methods have been proposed for predicting enhancers using the features 

described above. Traditional methods that mainly use non-context-specific features have been 

discussed in detail in another review (Su et al. 2010). Here we focus on more recent methods 

that incorporate the different types of context-specific features. These methods can be broadly 

grouped into two categories, namely unsupervised methods and supervised methods. 

Unsupervised methods do not require any known enhancers and non-enhancers as examples. 

Some of these methods define simple filtering rules to identify the most likely enhancers 



based on the observed features. Some other methods cluster genomic regions according to 

these features, and identify clusters that are likely enhancers. In contrast, supervised methods 

require known enhancers and non-enhancers as inputs and derive models for enhancers using 

machine learning techniques. A more detailed discussion of the use of unsupervised and 

supervised methods (and also semi-supervised methods) in identifying genomic elements can 

be found in a recent review (Yip et al. 2013). In this section we first discuss the unsupervised 

methods for enhancer prediction. 

 

Thurman et al. (Thurman et al. 2012) defined distal DHSs separated from a TSS by at least 

one other DHS as enhancer candidates. The DNase I hypersensitivity signals of each enhancer 

candidate in different cell types were correlated with those of each promoter within 500 kb 

from it. Any candidate with a resulting Pearson correlation of 0.7 or above was predicted as 

an enhancer. 

 

Andersson et al. (Andersson et al. 2014) identified enhancers based on a directionality score 

of eRNA. They superimposed CAGE tags on H3K27ac-marked enhancers defined by 

ENCODE (the methods of which will be discussed below) and found that CAGE tags showed 

a bimodal distribution flanking the central P300 peak with divergent transcription from the 

enhancer. In contrast, the transcripts at promoters were strongly biased towards the sense 

direction. With this distinct difference, a directionality score was calculated for every 200bp 

window genome-wide, and loci with low, non-promoter-like directionality scores were 

selected as enhancer candidates, among which the ones located far away from TSSs and 

exons of protein-coding and non-coding genes were predicted as enhancers. To validate these 

predicted enhancers, they further selected strong, moderate and low-activity enhancers 

defined by CAGE tag frequency in HeLa cells and conducted enhancer reporter assays. They 

found that 73.9%, 70.7% and 67.4% of the strong, moderate and low-activity CAGE-defined 

enhancers showed significant signals in the reporter assays, respectively, demonstrating that 

eRNA could be an intrinsic characteristic of active enhancers. 

 

The above two methods are simple unsupervised methods based on thresholding on a single 

feature. ChromHMM (Ernst & Kellis 2010; Ernst & Kellis 2012; Ernst et al. 2011) and 

Segway (Hoffman et al. 2012) utilize more complex machine learning models and dozens of 

features each in predicting enhancers. 

 

ChromHMM characterizes chromatin states including enhancers by learning a multivariate 

hidden Markov model (HMM) with the largest data set available at the time it was proposed 

(Barski et al. 2007; Wang et al. 2008) containing various HMs, histone variants and protein 

binding ChIP-seq signals (e.g. H2AZ, RNA polymerase II and CTCF) (Ernst & Kellis 2010). 

This method involves five key steps. First, the whole genome was divided into 200bp 

intervals. The signals of different HMs in an interval were then binarized, and thus each 

interval was described by a binary vector of the presence/absence of HM signals. Third, the 

number of states and the model parameters were determined by an exhaustive comparison of 

the cluster number from 2 to 80, with 3 different types of random initialization of parameters. 

The best model was selected by a Bayesian Information Criterion (BIC) score. Intuitively, the 



procedure attempted to find the minimum number of states that could still distinguish 

genomic regions exhibiting distinct HM patterns into different states. Finally, a 51-state model 

was selected. The fourth step was to associate each genomic interval with the state that 

maximizes the posterior probability using the forward-backward algorithm. The last step was 

to interpret the states biologically. This step involved both analyses of additional data 

(including expression, sequence motif, gene ontology, SNP and GWAS) and manual 

annotations. Based on the annotation results, several states were found to be related to 

enhancers (States 20, 29, 30, 31, 32 and 33). For instance, genomic regions in States 29 and 

30 were interpreted as strong distal enhancers with characteristic high DNase I 

hypersensitivity and TF binding signals. 

 

The same authors later Error! Reference source not found.further applied ChromHMM to 

nine human cell types and identified 15 states that showed distinct enrichments of different 

types of biological signals (Ernst et al. 2011). Eight predicted strong enhancers (State 4) and 7 

predicted weak/poised enhancers (State 7) from the Hep-G2 cell line and 7 predicted 

weak/poised enhancers specific to the GM12878 cell line were tested in Hep-G2 using 

luciferase reporter assays. Only strong enhancers from HepG2 were observed to show strong 

luciferase signals. 

 

Segway, based on Dynamic Bayesian Network (DBN), is similar to ChromHMM in the 

underlying mechanisms. In fact, a standard HMM can be represented by a DBN (Koller & 

Friedman 2009). The main differences between the original applications of Segway and 

ChromHMM lie in the following aspects: First, Segway used HMs and TF binding as features 

while ChromHMM mainly used HMs; Second, Segway worked at single base pair resolution 

while ChromHMM worked on 200bp bins; Third, Segway accepted continuous features while 

ChromHMM dealt with binary features; Fourth, Segway had an explicit indicator variable for 

missing values while ChromHMM considers them as 0s. The first two differences were 

mainly choices made in the corresponding studies, but the ChromHMM method itself could 

incorporate TF binding signals and work at a higher resolution. When applying to the dataset 

from ENCODE, Segway identified 25 labels (analogous to the “states” in ChromHMM) and 

marked enhancers by the E-label. In a later study, the authors of ChromHMM and Segway 

collaborated and integrated these two methods to identify sequence elements from ENCODE 

data (Hoffman et al. 2013). 

 

Yip et al. (Yip et al. 2012) defined two pipelines for predicting enhancers. Both pipelines start 

from all genome regions, and apply a series of filters to retain only regions likely to be 

enhancers. The first pipeline involves ChIP-seq signal shapes, gene annotations and HM 

signals. The second pipeline involves sequence features, TF binding active regions (BARs), 

gene annotations, conservation scores, sequence motifs and TF expression levels. BARs were 

determined using ENCODE TF binding data. Although ChIP-seq data of more than 100 TRFs 

were collected, this number of TRFs is still only a small portion of the estimated 1,700 to 

1,900 human TFs (Vaquerizas et al. 2009). Therefore, instead of defining BARs by the 

binding sites directly observed in the limited data, a statistical model of BARs was 



constructed using these directly observed binding regions as positive examples and various 

types of ENCODE data as the features, including DNase I hypersensitivity and HMs. 

 

Predictions of the two pipelines were combined, and the integrated predictions underwent two 

rounds of experimental validations. In the first round, among 6 predictions randomly selected 

from the top 50 predictions, 5 were found to have enhancer activities in various tissues in 

mouse embryo with good reproducibility. In the second round, the goal was to predict all 

enhancers in the human genome. Therefore a large number of predictions were made, among 

which about 50 were experimentally tested in mouse and Medaka fish. Overall, 42 unique 

regions could be successfully tested, among which 28 showed enhancer activities in at least 

one assay. 

 

Overall, the five methods described above represent some of the latest unsupervised methods 

for computational enhancer prediction. It should be noted that the first two methods were 

specially designed for enhancer prediction while the other three were designed to discover 

various types of chromatin states in general, but with enhancers as some of the states in 

particular. 

 

 

Supervised methods for enhancer prediction 

 

As explained, supervised methods for enhancer prediction require known enhancers and 

non-enhancers as input examples. Since the numbers of experimentally tested positive and 

negative examples are limited, different methods have used a variety of strategies to define 

these input examples. The different methods also differ from each other by the features being 

used and the statistical models constructed. 

 

Heintzman et al. (Heintzman et al. 2007) used a correlation-based method to predict 

enhancers based on their similarity to the enhancer examples. Enhancer examples were 

defined as regions with P300 binding sites. The genome was divided into 10kb windows, 

where an HM profile was constructed for each window based on the average ChIP-seq signals 

of different HMs. Enhancers were then predicted as those windows having an HM profile 

highly correlated with a P300-defined enhancer. In total, around 700 enhancers were 

predicted in this way. They were found to be significantly enriched in predicted 

transcriptional regulatory modules and DHSs. A large fraction of these predictions were also 

found to contain highly conserved sequences. 

 

Won et al. (Won et al. 2008) presented a HMM-based method integrating HMs to predict 

enhancers. The positive examples were again defined by P300 binding sites. A simulated 

annealing procedure was used to search for the most informative combination of HMs and the 

optimal window size. The procedure identified a set of 6 HMs as the most informative, and a 

window size of 2kb to be optimal. A 3-state HMM model was then trained on a subset of the 

enhancer examples, and tested on another subset. The prediction results were found to be 



more accurate than the predictions by the Heintzman et al. method (Heintzman et al. 2007) in 

terms of positive predictive value and sensitivity. 

 

Firpi et al. (Firpi et al. 2010) developed a method called CSI-ANN based on a time-delayed 

neural network (TDNN) framework to predict enhancers in HeLa and Human CD4
+
 T cells. 

In the case of T cells, the whole genome was divided into 2.5kb windows with consecutive 

windows overlapped by 1.25kb. Windows that contain gene-distal and narrow P300 binding 

peaks in human T cells and overlap computationally predicted enhancers in the PReMod 

database (Ferretti et al. 2007) were defined as enhancer examples, leading to a positive set of 

213 enhancers. The negative set was composed of random windows 10 times the number of 

positive examples. For each window, the average signals of 39 HMs in T cells, or an energy 

function of them (D’Alessandro et al. 2003) were computed as its features. Fisher 

discriminant analysis (FDA) was then performed to reduce these 39×2=78 features to a 

one-dimensional feature. Finally this feature was fed into a TDNN classifier. 36,769 

predictions were made and 13.1% of them were found to overlap P300 sites and DHSs in T 

cells. 22.1% of the predictions were found to be conserved across 17 vertebrate genomes and 

24.6% were enriched for TF binding motifs. 

 

Rajagopal et al. (Rajagopal et al. 2013) developed a vector-random-forest-based supervised 

model called RFECS for enhancer prediction. Gene-distal P300 binding sites overlapping 

DHS were defined as positive enhancer examples, while TSSs overlapping DHS and random 

100bp bins distal from P300 binding sites or TSS were defined as negative enhancer examples. 

For each 100bp genomic region, the average signal of each of 24 HMs was computed. 

However, instead of taking only these average signals as the features of a genomic region like 

what was commonly done, each region also took the signal values from the adjacent regions 

within the 1kb upstream and downstream window as its own features. Therefore for each 

genomic region, each HM produced a 20-dimensional feature vector of numeric values. The 

reason for doing that was to capture the local signal pattern, which could be useful for 

identifying enhancers. To handle these vector features, RFECS constructed a linear classifier 

using the Fisher Discriminant approach inside each decision tree node. 

 

This method was applied to the H1 embryonic stem cells and the IMR90 lung fibroblasts. To 

validate the predictions, some “gold standard” enhancer regions were defined by combining 

DHS, P300 binding sites and a few sequence specific transcription factors known to function 

in each of these two cell types. The validation rate of the predicted enhancers was 80% in H1, 

which was highly significant when compared to the 18.43% validation rate of randomly 

predicted enhancers. 5% of the predicted enhancers overlapped with TSSs, which were 

considered misclassified. The validation and misclassification rates in IMR90 were 85% and 

4%, respectively. It should be noted that since the criteria used for defining the enhancer 

examples in the training set and the criteria used to define the validation set were not mutually 

exclusive, the accuracy of the model needs to be further confirmed by independent data sets. 

 



Another contribution of this work was its proposed set of HMs optimal for enhancer 

predictions. The top three HMs were found to be H3K4me3, H3K4me1 and H3K4me2 in H1, 

while H3K27ac, commonly believed to mark active enhancers, seemed not very predicative. 

 

In summary, due to the increasing number of experimentally validated enhancers and the 

availability of high-throughput features, supervised methods have become increasingly 

popular. It is expected that more supervised enhancer prediction methods will be proposed in 

the coming years. 

 

 

Computational methods for enhancer target prediction 

 

Features used in enhancer target prediction 

 

Compared to enhancer prediction, less feature types have been considered in predicting 

enhancer targets (Table 2). The first and simplest feature considered is whether a promoter is 

the nearest one from an enhancer. A slight variation of this idea is to consider the distance 

between an enhancer and a promoter, assuming a higher possibility that the enhancer 

regulates a promoter if they are closer to each other. Some previous studies have considered 

enhancers between 125kb (Ernst et al. 2011) and 1Mb (Fu et al. 2014) from potential target 

promoters. As discussed, chromosome conformation data have suggested that the median 

distance between an enhancer and a target promoter is 124kb (Jin et al. 2013). One drawback 

of using distance to predict enhancer targets is that very distal associations could be missed if 

the distance threshold is set too low. Conversely, if the distance threshold is set too high, 

many false positives could be produced. One way to avoid setting an arbitrary distance 

threshold is to consider only enhancer-promoter pairs within same topologically associating 

domains (TAD) (Dixon et al. 2012; Nora et al. 2012), which are genomic blocks separated 

from other blocks by the genome structure. 

 

Sequence co-conservation is another feature that has been used in enhancer-promoter 

association prediction (He et al. 2014). The rationale is that if an enhancer regulates a 

promoter, there would be selective pressure against independent evolution of them, and thus 

they may exhibit co-conservation patterns. Some previous studies (Ahituv et al. 2005; Kikuta 

et al. 2007) also suggested that a real enhancer-promoter association is more likely to be 

maintained in a conserved synteny block (Larkin et al. 2009), which could be used as a soft 

distance constraint. 

 

As high-throughput sequencing data became widely available, the correlations between 

certain molecular signals at an enhancer and its candidate target promoters across multiple 

contexts were considered. As discussed above, the main idea is that if the activity of an 

enhancer correlates with the activity of a promoter, the enhancer could be regulating the 

promoter. The molecular signals considered and the potential issues of using correlation 

features have been discussed above when discussing the features used in enhancer prediction. 

An additional issue is that if correlations are computed between all enhancer-promoter pairs 



without any pre-filtering, there would be a very large number of pairs being considered. As a 

result, a very large number of contexts are needed to reach statistical significance after 

considering the issue of multiple hypothesis testing. We also note that to what extent enhancer 

activities can quantitatively correlate with promoter activities is still not clear. In fact, some 

studies (Andersson et al. 2014) have observed enhancer-promoter associations with low 

activity correlations. 

 

Among these features, only signal correlations consider context-specific information. A tricky 

point is that depending on how this feature is used, it may still be unable to identify 

context-specific enhancer targets. For instance, if a single correlation value is computed based 

on all the contexts, this correlation value only tells whether the enhancer appears to regulate 

the promoter in general, but not exactly the contexts in which the regulation happens. 

 

Table 2. A summary of features used in computational enhancer target prediction 

Feature Advantages Potential drawbacks 

Closest promoter Easy to identify An enhancer does not always regulate 

the closest promoter (Andersson et al. 

2014; He et al. 2014) 

Distance between 

enhancer and 

promoter 

Easy to compute There may not be a single threshold 

suitable for all cases; 

An enhancer does not always regulate 

the closest promoters 

Co-conservation Easy to compute; 

Utilizes information from 

multiple species 

Both enhancers and 

enhancer-promoter associations are 

not necessarily highly conserved 

Correlation of 

molecular signals 

Utilizes context-specific 

information 

No signal correlates perfectly 

between enhancers and promoters; 

Correlation coefficients could be 

strongly affected by outliers; 

Requires a large number of context to 

reach statistical significance 

 

Figure 2. Features used in computational enhancer target prediction. 
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Unsupervised methods for enhancer target prediction 

 

Similar to enhancer prediction, most methods for enhancer target predictions are unsupervised, 

due to the limited number of experimentally validated enhancers and enhancer targets. 

 

As discussed, the most straightforward method is to predict the closest promoter as the only 

target of each enhancer. This is a simple but imperfect method. Several studies (Andersson et 



al. 2014; He et al. 2014) have shown that only a fraction (e.g., 40% (Andersson et al. 2014)) 

of enhancers recognize the nearest promoter as their targets, and one enhancer could regulate 

multiple promoters. A variation of this method is to predict the nearest promoter within a 

certain distance range (e.g. between 5kb and 50kb from the enhancer (Ernst et al. 2011)) from 

an enhancer as its target. 

 

Most current unsupervised methods extract all promoters within a certain distance range from 

an enhancer as candidate targets, and then use activity correlations to identify the most likely 

targets. A practical problem is finding a proper correlation threshold. Some studies 

(Andersson et al. 2014) use a rather low threshold of 0.2 while some other studies (Thurman 

et al. 2012) use a much higher value of 0.7. If a value-based correlation function such as 

Pearson correlation is used, the correlation values can be easily affected by a few outlier 

points. On the other hand, if a rank-based correlation function such as Spearman correlation is 

used, the correlation value can become quite arbitrary if the activity values in many contexts 

are similar and their ranks are sensitive to small differences. Multiple hypothesis testing is 

also a critical issue, because without a proper distance cutoff, many enhancer-promoter pairs 

would be considered and it is easy to get some strong correlation values merely by chance. 

Table 3 compares some of these unsupervised methods. 

 

Table 3. A summary of correlation-based unsupervised methods for enhancer target prediction 

Reference Distance  Features denoting 

activity/inactivity 

(A/I: enhancer-promoter) 

Correlation 

function(s) 

Threshold 

(Thurman 

et al. 2012)  

Within 

500kb 

A: DNase I hypersensitivity 

-DNase I hypersensitivity 

Pearson 0.7 

(Andersson 

et al. 2014)  

Within 

500kb 

A: 

CAGE(eRNA)-CAGE(mRNA) 

Pearson 0.2 

(Fu et al. 

2014)  

Within 1Mb A: H3K4me1/H3K27ac-mRNA 

I: DNA methylation-mRNA 

Pearson and 

Spearman 

User-defined 

 

Some studies used a further step to validate their predictions. Thurman et al. (Thurman et al. 

2012) profiled chromatin interactions using 5C for the phenylalanine hydroxylase (PAH) gene 

in hepatic cell and found the chromatin interactions measured by 5C closely paralleled the 

correlations of the corresponding predicted associations. They also overlapped their 

predictions with 5C and ChIA-PET data in K562, and discovered that their predictions were 

markedly enriched in the DNA long-range interactions. Andersson et al. (Andersson et al. 

2014) found that 15.3% of their predictions could be validated by ChIA-PET data from 

multiple cell types. Moreover, their predictions were enriched in conserved sequence motifs 

and ChIP-seq peaks. 

 

Ernst et al. (Ernst et al. 2011) selected all TSSs between 5kb and 125kb from an enhancer as 

its potential targets. To identify the more likely ones, these enhancer-TSS pairs were first 

assumed to be the positive examples, and a set of negative examples was formed by randomly 

assigning expression values of the same pairs. For each (positive or negative) enhancer-TSS 



pair, the correlation between the HM signals at the enhancer and the expression levels of the 

TSS across multiple contexts was computed. A logistic regression classifier was then 

constructed to distinguish the positive and negative examples based on the activity 

correlations. The classifier was then used to compute a link score for each enhancer-TSS pair, 

defined as the ratio of the positive association probability to the negative association 

probability. The pairs with a link score larger than 2.5 were predicted as real associations. 

This is another example that even a supervised model (logistic regression) was used, but since 

the positive examples were not really known examples but just a set of examples more likely 

to be positive due to the proximity of the corresponding enhancers and TSSs, the overall 

method should be considered an unsupervised one for predicting enhancer targets. 

 

Corradin et al. (Corradin et al. 2014) developed a method called PreSTIGE for cell-type 

specific enhancer-promoter association prediction. Enhancers were defined as H3K4me1 sites 

across 12 cell types. First, a specificity score was assigned to each enhancer and to each 

transcript separately in the 12 cell types based on Shannon’s entropy (Schug et al. 2005). 

Thresholds were set to define cell-type specific enhancers and transcripts based on the 

specificity scores. For example, enhancers with high specificity to a certain cell type were 

considered to be active in this cell type but not in the others. The next step was to link 

cell-type specific enhancers to their target cell-type specific genes. Several linear domain 

models for setting the distance thresholds were compared, based on which a model called 

100kb/CTCF was selected to link enhancers and genes. In this model, all TSSs closer to an 

enhancer than the closest CTCF binding site, or 100kb at most, were predicted as the targets 

of the enhancer. This model identified over 226,000 and 113,000 enhancer-target predictions 

across the 12 cell types with low and high thresholds, respectively. The predictions were 

further overlapped with existing 3C, ChIA-PET, eQTL, 5C and colon cancer specific 

enhancer alteration data and showed significant intersections. 

 

 

Supervised methods for enhancer target prediction 

 

There have not been a lot of supervised methods proposed for enhancer target prediction, due 

to the limited number of validated examples. In this section, we introduce one supervised 

method that uses chromosome conformation data to define the examples. 

 

A sophisticated Random Forest based supervised method called IM-PET was developed by 

He et al. (He et al. 2014). The positive examples were selected from enhancer-promoter pairs 

with ChIA-PET connections in K562 and MCF-7 cells, with the additional requirements that 

there were at least 5 PET counts, at least one of the two interacting sites contained P300 

binding, and the other contained a promoter of RPKM larger than 0. A naïve way to define the 

negative examples would be to draw random enhancer-promoter pairs. However, if the 

promoters in these pairs were very far away from their enhancers, which would likely be the 

case if enhancers and promoters were drawn uniformly from the whole genome or the same 

chromosome, the positive and negative examples could be easily separated by a simple model 

that considers only the distance between the enhancer and promoter. Therefore, IM-PET 



instead used random enhancer-promoter pairs with a distance that follows a background 

distribution of non-interacting genomic loci in a chromatin fiber (Dekker et al. 2002). The 

negative examples were also required not to have 3 or more PET counts in the ChIA-PET data. 

Four features were then used to train a supervised Random Forest model for enhancer-target 

associations. The first feature was the activity correlation between an enhancer and a 

promoter, with enhancer activities defined by H3K4me1, H3K4me3 and H3K27ac signals, 

and promoter activities defined by its expression value. The second feature was similar to the 

first one, but the enhancer activity score was replaced by the expression levels of TFs that 

bind the enhancer. The third feature was the co-conservation of the enhancer and promoter 

sequences and the conservation of the synteny block across multiple species. The last feature 

was the genomic distance between the enhancer and promoter. 

 

The trained model was applied to 12 human cell types by first identifying active enhancers in 

each cell type followed by extracting all promoters within a 2Mb window centered on the 

enhancer as their candidate targets. At a false discovery rate of 0.01, the resulting model 

predicted more than 440,000 unique enhancer-promoter associations in the 12 cell types in 

total. To validate the predictions, chromosome conformation capture coupled with 

quantitative PCR (3C-qPCR) was performed for 16 predictions and 13 of them could be 

validated. The predictions were also compared with interactions obtained from Hi-C and 

ChIA-PET, and reported eQTL-gene pairs. The results showed that IM-PET performed the 

best as compared to four other methods, namely nearest promoter, Ernst et al. (Ernst & Kellis 

2010), Thurman et al. (Thurman et al. 2012) and PreSTIGE (Corradin et al. 2014). 

 

The four features used in this work appear reasonable and biologically meaningful. The 

careful selection criteria for the training sets probably contributed to the good prediction 

results. Nevertheless, it should be noted that all the four features were not context-specific, 

including the activity correlation feature since only a single correlation was produced from 

each pair, as discussed above. Therefore, the method was unable to identify enhancer-target 

associations that are specific to particular contexts. 

 

 

Databases useful for enhancer and enhancer-promoter association prediction 

 

After discussing the features and latest methods used in computational prediction of enhancers and 

enhancer targets, here we list in Table 4 some of the popular databases that contain 

computationally predicted or experimentally validated enhancers and enhancer targets. 

 

Table 4. Some databases that contain predicted or experimentally tested enhancers and enhancer 

targets 

Database Species  Description 

dbSUPER (Hnisz et al. 2013) Human and 

mouse 

The first database of super-enhancers, 

containing a catalog of 66033 

super-enhancers in 96 human and 5 

mouse tissue/cell types. 



Provides a browser for functional 

analyses.  

EI (Pennacchio et al. 2007) Human and 

mouse 

A database containing computational 

predicted tissue-specific enhancers 

based on TFBSs.  

FANTOM5 Transcribed 

Enhancer Atlas (Andersson et al. 

2014) 

Human An atlas of predicted enhancers based 

on eRNA; 

Contains 43011 computational predicted 

enhancers in total; 

Contains cell/organ/tissue-specific 

computational predicted enhancers; 

Contains computational predicted 

enhancer-promoter associations. 

PEDB (Kumaki et al. 2008) Human and 

mouse  

A database of computational predicted 

enhancers based on conserved 

non-coding regions, TSSs and TFBSs.  

PReMod (Ferretti et al. 2007) Human and 

mouse 

A computationally predicted CRM 

database based on TFBSs. 

REDfly (Gallo et al. 2011) Drosophila A curated collection of known 

Drosophila CRMs and TFBSs; 

Contains enhancers in vivo; 

Contains enhancer-promoter 

associations in vivo. 

VISTA (Visel et al. 2007) Human and 

mouse 

Tested predicted human enhancers in 

mouse; 

Contains information on 2192 in vivo 

tested elements; 

1154 elements with enhancer activity. 

(As of 4/15/2015) 

ZEnBase (Navratilova et al. 

2009) 

Zebrafish A database containing computational 

predicted enhancers based on 

conservation information. 

 

 

Conclusions and discussions 

 

Data processing 

 

A fundamentally important but usually neglected topic in both enhancer prediction and 

enhancer target prediction is data processing. As with many problems in bioinformatics, 

different data processing strategies could result in huge differences in the results. For instance, 

Andersson et al. (Andersson et al. 2014) computed enhancer eRNA directionality scores 

based on the normalized CAGE data across 808 samples, which were normalized by 

converting tag counts to tags per million mapped reads (TPM) followed by normalization by 



relative log expression (RLE) between samples. Our own analysis of this dataset shows that if 

a different normalization strategy is used, the resulting set of enhancers could become very 

different. In enhancer target prediction, whether taking log on gene expression levels could 

have big effects, especially when engaging a Pearson-correlation based measurement. 

Unfortunately, there is not a gold-standard normalization method that works best in all cases. 

Simple statistical analyses and plots of the data would help in the selection of the proper 

normalization method. 

 

Feature usage 

 

Good features play crucial roles in the prediction performance of machine learning methods, 

which we have discussed comprehensively above. Here, we discuss three important aspects of 

feature usage in enhancer and enhancer target predictions. First, as context specificity is an 

intrinsic characteristic of both enhancer activities and enhancer-target associations, we stress 

the importance of including context specific features. In the history of enhancer prediction, 

motifs and conservation were first used. These are “static” features, which means we could 

only use these features to judge whether a genomic region is an enhancer in some contexts, 

but not when (e.g., which developmental stage) and where (e.g., which cell type, cellular 

process) it would become active. Later, thanks to the boom of ChIP-seq data in a wide range 

of cell types, context-specific features such as HM and TF binding signals made it possible to 

perform cell-type specific enhancer predictions. In contrast, most current methods for 

enhancer target prediction use only static features. If the active enhancer-target associations in 

a given context are to be identified, one common strategy is to consider only the pairs 

involving an enhancer predicted/proved to be active in the context. Due to changes of 

chromosome conformation or other reasons, it is possible that an enhancer active in two 

different contexts regulates different genes in the two contexts. Novel methods that can utilize 

more context-specific information in directly predicting enhancer targets in a given context 

are called for. 

 

A second interesting aspect is the relative importance of different features. When 

investigating a context with insufficient experimental data, and one is to perform additional 

experiments to get data for predicting enhancers or enhancer targets, it would be desirable to 

know what experiments are most cost-effective. Rajagopal et al. (Rajagopal et al. 2013) found 

a set of HMs that resulted in the best prediction accuracy, which partially answered this 

question. More generally, the relative importance of different types of features such as HM, 

TF binding, eRNA and DNA methylation is yet to be studied. 

 

Another aspect is that a feature could be used for defining positive/negative examples, 

constructing the prediction model, or evaluating the performance of a model. For instance, 

P300 binding has been used in a number of studies for defining positive examples; Some 

studies use the enrichment of P300 binding signals as a way to partially validate the 

predictions; P300 could as well be used as a feature for building a model for predicting 

enhancer. One major current challenge is that given the limited number of features, one needs 

to determine which of them should be used in each of these three tasks, so that prediction 



accuracy can be maximized while there is no “leakage” of information in the prediction 

process, i.e., having some information used both in training and validating a model. This 

problem is expected to be mitigated as more experimentally validated enhancers and enhancer 

targets become available. 

 

Prediction validation 

 

Prediction validation is a crucial part of every prediction task in bioinformatics. However, 

among the studies discussed, only a very small portion of the predictions made were tested 

experimentally. Obviously it is difficult to validate all predictions using highly accurate, 

low-throughput experimental assays due to the prohibitive cost. Another type of validations 

commonly performed is cross-checking the predictions with previously published 

experimental results such as ChIA-PET, Hi-C, 5C and eQTL-gene pairs for enhancer-target 

associations. One potential problem is that the predictions could be made in a context 

different from the one from which these public data were produced. Noise in these 

experimental data could be another issue. Also, some of these data only provide supporting 

evidence, but cannot completely prove the correctness of a prediction. For instance, a 

predicted enhancer-promoter association with in vitro ChIA-PET data support does not 

necessarily mean the enhancer-promoter interaction must have a regulatory role; It does not 

even guarantee the enhancer and the promoter are in contact in vivo. Having these 

shortcomings notwithstanding, including independent experimental supports would definitely 

help in evaluating and improving existing computational prediction methods. 

High-throughput assays such as STARR-seq, which has higher data variability but lower 

relative cost than low-throughput assays, could be a good choice for large-scale validations of 

computational predictions. 

 

Training set design in supervised methods 

 

The careful selection of training examples is key to the success of machine learning methods. 

In many bioinformatics problems, the design of a suitable negative training set is far from 

trivial. For instance, in enhancer prediction, the negative examples cannot be simply defined 

as randomly-selected regions not known to be enhancers, for these examples are too different 

from the positive examples in many aspects, and any model that distinguishes active regions 

in the genome from the inactive ones would probably separate the positive and negative 

examples well. In other words, the resulting model may not be useful for predicting enhancers, 

but just general active genomic regions including gene bodies and other types of regulatory 

elements. The rule of thumb is that the negative examples should not be “too negative”, i.e., 

they should share as many features as the positive examples as possible, except for the ones 

very unique to the positive examples. Alternatively, including a mixture of different types of 

negative examples could make it more robust. 

 

Multiple-to-multiple relationships 

 



After reviewing the current methods for association prediction, we notice that there are no 

existing methods that explicitly handle multiple-to-multiple relationships between enhancers 

and promoters. Every enhancer-promoter pair was considered independently in all the 

surveyed methods. Though the mechanisms of enhancer targeting are not completely clear yet, 

previous studies have shown that multiple enhancers (called shadow enhancers) controlling 

the same promoter could ensure the robust expression of the corresponding genes 

(Meireles-Filho & Stark 2009; Perry et al. 2011). New computational methods are needed to 

study the significance of modeling the effects of multiple enhancers and/or targets 

simultaneously. 

 

Future outlook 

 

Overall, we predict that context specificity and multiple-to-multiple relationships would be 

two important aspects that should be incorporated in future enhancer and enhancer target 

predictions. 

 

Among all the features considered for the two tasks, we think eRNA is a promising feature for 

both tasks for two reasons: First, CAGE experiment is mature and economical and thus can be 

applied to many samples; Second, both eRNA and promoter activity are quantified in the 

same way based on CAGE tags, making the corresponding data easily comparable. 

 

Since there are experimentally validated enhancers and enhancer targets, but the numbers are 

small, semi-supervised prediction methods that make use of both labeled examples and 

properties of unlabeled points could be more suitable than purely unsupervised or purely 

supervised methods. 

 

Active learning is another direction worth pursuing. The active learning setting aims at 

acquiring new examples that can benefit the overall learning process most. In enhancer and 

enhancer target predictions, ambiguous cases (such as enhancers with intermediate levels of 

H3K27ac) could be most informative in refining prediction models. 

 

Finally, we hope to see more collaboration between computer scientists and biologists in 

studying enhancers and enhancer targets, since the validation process is of utmost importance 

for evaluating the computational methods and providing insights for improving the methods. 
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