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Abstract 

High-throughput sequencing has been used to study post-transcriptional regulations, where the 

identification of protein-RNA binding is a major and fast-developing sub-area, which is in turn 

benefited by the sequencing methods for whole-transcriptome probing of RNA secondary 

structures. In the study of RNA secondary structures using high-throughput sequencing, bases 

are modified or cleaved according to their structural features, which alter the resulting 

composition of sequencing reads. In the study of protein-RNA binding, methods have been 

proposed to immuno-precipitate (IP) protein-bound RNA transcripts in vitro or in vivo. By 

sequencing these transcripts, the protein-RNA interactions and the binding locations can be 

identified. For both types of data, read counts are affected by a combination of confounding 

factors, including expression levels of transcripts, sequence biases, mapping errors, and the 

probing or IP efficiency of the experimental protocols. Careful processing of the sequencing 

data and proper extraction of important features are fundamentally important to a successful 

analysis. Here we review and compare different experimental methods for probing RNA 

secondary structures and binding sites of RNA binding proteins (RBPs), and the computational 
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methods proposed for analyzing the corresponding sequencing data. We suggest how these 

two types of data should be integrated to study the structural properties of RBP binding sites as 

a systematic way to better understand post-transcriptional regulations. 
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Introduction 

The structures of RNAs are crucial to their functions. It is well established that the functions of 

some types of RNA, such as snRNAs, snoRNAs, rRNAs and tRNAs, depend highly on their 

structures. The CRISPR-Cas9 system for genome editing, currently receiving an explosion of 

extensive studies of its biology and applications, relies on the structures of the crRNA and 

tarcRNA to recognize the target sequence and interact with the Cas9 protein [1,2]. Even mRNAs, 

which were traditionally considered as mere messengers of the sequence information, have 
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been suggested to possess structures that affect translational efficiency [3], transcript stability 

[4] and  alternative splicing [5]. 

Adding to the versatility of RNAs is their ability to interact with various RNA-binding proteins 

(RBPs). There are more than 1,500 RBPs in human cells that interact with RNAs to perform 

complex functions [6]. These proteins play important roles in the regulation, localization and 

functioning of the RNAs [7]. The interactions between RBPs and RNA transcripts depend on 

both the sequence and structure of the transcripts, albeit with varying degrees of their relative 

importance in different interactions [8]. 

It has become possible to probe both RNA structures and RBP-RNA interactions in a high-

throughput manner using cutting-edge sequencing methods [9,10]. These methods have 

enabled large-scale and systematic discoveries of novel structures and interactions. Being high-

throughput methods, the data produced are subject to different types of noise and bias, which 

should be carefully handled during analysis. 

In this review, we first briefly describe the current high-throughput sequencing methods for 

studying RNA structures and RNA-RBP interactions, followed by a discussion of the 

computational methods for processing and analyzing the resulting data (Figure 1). There are 

other reviews on high-throughput probing of RNA structures [11,12] and RNA-RBP interactions 

[8,13]. Here we provide an integrated review of both problems. For each of these two problems, 

we comprehensively discuss and compare the special characteristics of each type of 

experimental data due to experimental limitations, biases and noise. Such discussions lay out 
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the background for our subsequent discussions on the computational methods for processing 

and utilizing these data, which are crucial for a successful analysis and is the focus of this review. 

In addition, a key message that we would like to convey is the close relationship between the 

identification of RNA structures and RBP-RNA interactions, that it would be advantageous to 

utilize both types of data to study RBP binding. We will review current approaches to 

integrating these two types of data, and point out other possible approaches that could 

potentially lead to new insights. 

[Place of Figure 1] 

High-throughput sequencing for probing RNA structures 

RNA footprinting is a classical method for studying RNA structures [14]. In this method, 

chemical reagents or enzymes are used to modify or cleave bases with specific structural 

features (e.g., unpaired bases), the positions of which can then be determined by gel 

electrophoresis or capillary sequencing. 

RNA footprinting has been combined with high-throughput sequencing for studying RNA 

structures at the whole-transcriptome scale [15]. We summarize and compare the recent high-

throughput RNA structure probing methods in Table 1. These methods mainly differ from each 

other by the probe they use, which has implications in the bases that can be probed, data 

resolution, whether in vivo probing is possible, sequence and positional biases, and the 

efficiency and specificity of marking/cleaving bases according to their structural properties. 
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[Place of Table 1] 

Methods based on enzymatic cleavage of bases with specific structural properties 

The first method proposed for transcriptome-wide measurement of RNA secondary structures 

is Parallel Analysis of RNA Structure (PARS) [3].  It uses two kinds of enzyme, namely RNase V1 

and nuclease S1, to preferentially cleave paired and unpaired bases in RNAs, respectively. RNA 

fragments cleaved by V1 and S1 enzymes are separately amplified and sequenced by RNA 

sequencing (RNA-seq) [16]. For each base, the ratio of corresponding reads in the V1 and S1 

data sets indicates the chance that the base is paired in the RNA structure. The PARS 

experiment was later shown to be applicable for studying RNA folding energies [17] and 

variations of RNA structures such as riboSNitches [12,18]. 

Similar to PARS, another method called Fragmentation Sequencing (FragSeq) [19] was proposed 

to identify structures of non-coding RNAs. This method uses a single enzyme, nuclease P1, to 

preferentially cleave RNAs at unpaired bases. Without using a second enzyme for paired bases, 

FragSeq instead uses a control experiment without nuclease treatment to estimate and correct 

for background biases. Besides PARS and FragSeq, there are also other experimental methods 

proposed (such as dsRNA-seq) that use RNase ONE to probe unpaired bases [20,21]. One 

limitation of these enzyme-based methods is that they were developed for in vitro probing of 

RNA structures, which could be different from the in vivo structures. 
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Methods based on chemical modification of bases with specific structural properties 

In contrast to treatments using structure-specific enzymes, another class of methods use 

chemical probes for detecting RNA secondary structures. Selective 2’-Hydroxyl Acylation 

Analyzed by Primer Extension (SHAPE) is one of these methods that has been integrated with 

high-throughput sequencing [22].  In this method, a small adduct is preferentially added to 

flexible unpaired bases in loops, which causes sequencing reads to end at those locations. Due 

to the use of a small chemical probe, SHAPE-seq has the advantage of inferring structures with 

a higher precision. Moreover, SHAPE-seq has been extended for in vivo usage, leading to a 

global in vivo structural picture of the mouse embryonic stem cell transcriptome [23]. By using 

individual barcodes to assign identity to RNAs, even highly similar RNAs can be distinguished 

using SHAPE-seq, but the use of barcodes also makes it difficult to simultaneously study a large 

number of transcripts genome-wide [12]. Benefiting from a newly designed SHAPE reagent, 

icSHAPE is currently one of the best methods of probing dynamic RNA secondary structures [23]. 

In another chemical-based method called DMS-seq, dimethyl sulfate (DMS), an even smaller 

chemical, was used for high-resolution transcriptome-wide probing of RNA structure in vivo 

[24–26]. A limitation of DMS-seq is that due to the chemistry, mainly only the structural 

information of adenines and cytosines can be probed. There were also studies that combine 

DMS and another chemical called CMCT with high-throughput sequencing to probe RNA 

structures [27]. 
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Confounding factors in high-throughput RNA structure probing data 

All these high-throughput structure-probing data contain confounding factors that need to be 

carefully corrected before downstream analyses. One of the factors unrelated to RNA 

structures but which affects the read counts most is the abundance levels of the transcripts. 

Highly abundant transcripts could have orders of magnitude more reads than transcripts with 

low abundance. These low-abundance transcripts are particularly affected by sampling effects 

during the sequencing process and errors introduced during sequencing and sequence read 

alignment. As a result, read counts of the nucleotides of low-abundance transcripts can be 

poorly correlated with the structural properties of the nucleotides. To deal with this problem, in 

addition to the obvious solution of increasing the sequencing depth, the DMS-seq and SHAPE-

seq procedures can be modified to improve the detection of low-abundance transcripts by 

gene-specific cDNA amplification [28]. The ability to probe low-abundance transcripts is crucial 

in the study of RNA structures in general. 

Read counts at individual bases are also subject to biases intrinsic to RNA-seq, such as GC 

content and other intricate sequence features [29]. There have been extensive studies that 

attempt to model these biases present in general RNA-seq data and correct for their effects 

[29–32]. It has been proposed that similar corrections should be applied to RNA structure-

probing data [12]. 

There are also other issues specific to the experimental protocols that could lead to non-

uniform probing signals not directly caused by RNA secondary structures. One issue is that in 
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some experiments, different types of nucleotide are being modified with different efficiencies. 

For example, in DMS-seq, chemical probes modify atom N1 in adenines, atom N3 in cytosines, 

and sometimes atom N7 in guanines, with different efficiencies [15,25,26]. The resulting read 

count of a nucleotide thus depends partially on its type. If the modification efficiencies of 

different nucleotides of the same type are expected to be similar, probing signals for each type 

of nucleotides should be normalized separately. 

A more problematic situation is that read counts can also be affected by properties more 

difficult to measure [33]. For example, when an enzyme is used to cleave the RNA, steric 

hindrance would bias the enzymes toward cutting at locations that are more accessible [15]. 

Correcting for such biases requires a good understanding of the accessibility of each base in the 

experimental condition, which is not always possible. 

The two major stages that the confounding factors are handled 

In general, both the general (transcript level and sequence bias) and protocol-specific 

(differential efficiency of base modifications/cleavage and probe size) confounding factors are 

tackled at two stages. First, at the data production stage, additional data are produced to 

provide information for correcting the biases. For example, as mentioned above, FragSeq 

usually involves a control experiment to capture the non-uniform background distribution of 

read counts [19], whereas in PARS two different enzymes are used to produce data that are 

assumed to be subject to the same biases, which can be canceled out by comparing read counts 

from the two resulting sets of data [3]. 
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Second, at the data analysis stage, various computational methods have been proposed to 

correct for the biases. For example, the original analysis pipeline proposed for SHAPE-seq data 

involves a sophisticated statistical model that considers termination of reverse transcription 

due to both the chemical adducts and natural polymerase drop-off [34]. In DMS-seq, read 

counts were found to increase towards the 3’ end of a transcript [25]. This bias was corrected 

by normalizing each read count by the largest count within a local window. There are also 

methods that compute the enrichment of signals by comparing transcript-wise normalized read 

counts from DMS-seq with those from the control experiment [24]. 

High-throughput sequencing for identifying RNA-protein 

interactions 

As RNA-binding proteins are known to affect post-transcriptional processes such as splicing and 

localization, knowing the binding targets of each RBP would help understand these important 

processes [35]. Besides traditional binding site detection techniques that are largely based on 

sequence motifs [8], high-throughput methods have also been developed to uncover the RNA 

functional elements that interact with RBPs at the transcriptome-wide level [36]. Most of these 

methods are based on immuno-precipitation of protein-bound RNAs, either with cross-linking 

(CLIP [37]) or without (RIP [38]). They have led to many interesting discoveries, such as 

classification of RNAs according to their interactions with RBPs [7] and splicing factors of pre-

mRNAs [39]. Table 2 gives a list of recently developed high-throughput sequencing techniques 

for studying RNA-protein interactions on a transcriptomic scale. In addition to including cross-
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linking as a step of the experimental protocol or not, these techniques also have different cross-

linking efficiency, data resolution, specificity, types of RNA that can be studied, and target RBPs. 

[Place of Table 2] 

The main classes of high-throughput experimental methods 

HITS-CLIP [40], which involves CLIP followed by RNA sequencing, was first proposed to 

determine the RNA binding sites of a splicing factor. It has been used in a wide range of 

applications. More CLIP-based methods such as iCLIP [41] and PAR-CLIP [42] were later 

proposed with modified experimental details and additional steps that lead to improved cross-

linking efficacy and binding site resolution [36]. Similarly, the RIP procedure that does not 

involve cross-linking was also combined with high-throughput sequencing to become a method 

called RIP-seq [43]. RIP-seq has good detection sensitivity, but lacking the cross-linking step 

makes RIP-seq data more susceptible to false positives due to noise or indirect interactions 

when compared with CLIP-based alternatives [44]. 

As immuno-precipitation is protein-specific based on the antibody used, in order to get a global 

list of binding sites of RNA binding proteins in general, three new protocols select RNA-RBP 

complexes by targeting the polyadenylic acid (poly-A) tails in RNAs using oligo(dT) [45–47]. 

Although these methods can produce a global view of RNA binding sites, the scope is restricted 

to RNAs with poly-A tails, which may miss many functional non-coding RNAs. These methods 
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also do not provide information about the RBPs that bind each identified binding site, and 

therefore cannot be used for comparing the binding sites of different RBPs directly. 

Biases in the high-throughput experimental data 

Like other techniques, data from RIP- and CLIP-based experiments contain biases that are 

usually corrected in multiple steps [44,48,49]. Beginning at the raw sequencing reads, mapping 

software should be set to allow inexact matches at binding sites if an experimental protocol 

that introduces insertions, deletions or substitutions is used [50]. Polymerase chain reaction 

(PCR) duplicates need to be removed, so as to avoid biases in the downstream calculations [51]. 

Binding site clusters are then identified by peak-calling methods followed by motif discovery 

algorithms as summarized in two recent reviews [44,49].  During the peak-calling process, it 

would be useful to normalize the read counts at each peak by the corresponding transcript 

levels from an RNA-seq data if the read count of each binding site is to be further used for 

approximating the binding affinity, although it is not a standard step in existing peak calling 

methods for identifying RBP binding sites. Alternatively, RNA fragments that are likely to 

contain binding sites can be identified for studying sequence and structural motifs directly, 

without quantifying binding affinity at signal peaks. 

While sequence motifs are commonly identified at RBP binding sites on the RNAs, they are 

insufficient for determining the binding sites completely. Local RNA structures play a key role in 

RNA-RBP binding in some cases, which highlight the importance of the ability to systematically 

probe RNA structures on a large scale. It has also been found recently that N6-methyladenosine 
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could alter local base pairing, resulting in the exposure of buried RNA binding motifs and 

increased binding of a nuclear RNA-binding protein [52,53]. In general, methylation of RNA 

bases could introduce structural changes and affect the chance for a binding motif to be an 

actual binding site. These structural changes can be probed by new experimental methods such 

as icSHAPE. 

Another noticeable example of RNA secondary structure change is caused by single nucleotide 

variants called riboSNitches that were found to be very common in the human transcriptome 

[54]. RiboSNitches are known to cause human diseases by having the protein-RNA interactions 

affected by the structural changes [55], making the identification of these RNA structure 

changes and their effects to post-transcriptional processes important [56]. As mentioned above, 

structural changes caused by riboSNitches can be detected by high-throughput structure-

probing data. For example, PARS has been used to study riboSNitches by probing the RNA 

structures of a family trio and calculating changes of the RNA structures among each pair of 

individuals [12,18]. Based on the PARS data, the performance of 11 RNA folding algorithms in 

predicting riboSNitches was evaluated [57]. These identified structure changes can be used to 

help explain differential binding affinity of RBPs at locations with riboSNitches. 

Because of these complexities, sophisticated computational methods have been used to model 

the binding pattern of RBPs by considering both sequence- and structure-related features [8]. 
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Having introduced the experimental methods for probing RNA structures and RNA-protein 

interactions and the different types of confounding factors in the corresponding data, we now 

discuss the computational methods for analyzing these two types of data. 

RNA secondary structure prediction guided by high-throughput 

structure-probing data 

High-throughput structure-probing data provide structural information about individual bases, 

but they are insufficient for determining RNA secondary structures, because they only indicate 

whether a base is paired, but not the other base that it pairs with. In order to determine the 

structures, these data have been incorporated into computational RNA secondary structure 

prediction methods in various ways. We first briefly review two main classes of traditional RNA 

secondary structure prediction approaches, namely minimum free energy (MFE) and partition-

function-based methods. Most partition-function based methods adopt the idea of maximum 

expected accuracy (MEA). We then discuss how structure-probing data have been incorporated 

into these algorithms. 

Two main classes of RNA secondary structure prediction method 

Existing RNA folding algorithms are effective in predicting secondary structures of short RNAs 

based on sequence information alone [58]. Since RNA secondary structures involve mainly 

canonical A-U, G-C and wobble G-U pairs, the optimal structure defined as the one with lowest 

total free energy based on a given energy model can be efficiently predicted using dynamic 
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programming algorithms, when pseudoknots are not considered, by MFE (minimum free energy) 

algorithms [59]. Improved accuracy has been achieved by using a set of sequence-dependent 

free energy parameters for each type of sub-structure [60]. More refined models further 

include chemical modification constraints [33] and enthalpy change [61]. 

In another type of prediction methods, the algorithms are based on the partition function, 

which considers the whole ensemble of structures that can be formed from the same RNA 

sequence. Based on the partition function, an optimal structure can be defined as the one with 

the maximum expected accuracy (MEA) [62–64]. Alternatively, representative structures can be 

sampled and clustered from the whole ensemble [65]. 

These algorithms have been shown highly reliable for predicting the secondary structures of 

short RNAs. The corresponding software packages also provide a lot of useful functionality. For 

example, the latest RNAstructure package not only can predict a common structure for multiple 

RNA sequences but also provides an open programming interface for other researchers to 

integrate specific algorithms into the prediction process [66]. ViennaRNA is another popular 

package that has good performance and a user-friendly graphical interface [67]. Some other 

methods, such as mfold/UNAfold [68,69], are also widely used. 



 

 

16 

 

Incorporating high-throughput structure-probing data into RNA secondary structure 

prediction methods 

Given the effectiveness of these algorithms with short RNAs and their well-tested software 

packages, it has become attractive to incorporate high-throughput structure-probing data to 

help with the predictions of difficult RNA structures, while reusing the developed algorithms 

and software modules as much as possible [11,70,71] (Table 3). The incorporation of high-

throughput structure-probing data helps shrink the space of possible structures, which could 

benefit both the accuracy and running time of the prediction algorithms. Different types of 

high-throughput data have been incorporated into different RNA secondary structure 

prediction methods, and they have been used in different ways, including the definition of 

pseudo energy terms, introduction of constraints in the search for RNA structures, or selection 

of structures from a set of candidates. 

[Place of Table 3] 

Most of these methods incorporate structure-probing data by modifying the energy model of a 

traditional MFE algorithm.  One of the early approaches is to add pseudo free energy terms that 

penalize violations of the constraints defined by structure-probing data [72]. Various designs of 

the pseudo energy term were proposed. The first approach was to add a fixed penalty to the 

total free energy [33,60,67]. For each base forced to be unpaired according to structure-

probing data, a large energy penalty is given if it is paired with another base in a predicted 

structure. A linear pseudo energy term was later proposed to transform SHAPE constraints into 
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an energy function [73]. The two free parameters in the energy term were optimized using 

known structures. ShapeKnots [74] extended the energy term for incorporating SHAPE data by 

adding two more parameters that allow for the modeling of pseudoknots in base-pair stacking 

regions. Other forms of pseudo-energy terms derived from log-likelihood ratios were also 

incorporated based on SHAPE [75] and DMS data [76]. This type of pseudo-energy terms allows 

the quantitative signals from SHAPE [73] or DMS data [76] to be used in pace of the qualitative 

base-pair constraints. 

Pseudo-energy terms can be accommodated with MEA-based algorithms as well. Our RME 

method [77] adds pseudo-energy terms to base-pairing stacks based on the posterior odds to 

the partition function, and predicts optimal structures according to the resulting restrained 

partition function. As the posterior odds can be computed efficiently, the pseudo-energy terms 

introduced to RME is applicable to diverse types of probing data, including SHAPE-seq, PARS 

and DMS-seq. To make the probing data applicable to all base types, RNAsc [78] redefines the 

pseudo energy terms for every structural component with a guarantee that perfect constraints 

would lead to a correct predicted structure, although the requirement is not always true in 

SHAPE data [71]. 

Although the addition of pseudo energy terms is shown to be effective in practice, there is a 

concern that these added terms do not have well-justified physical-chemical meanings [71]. To 

overcome this issue, some other approaches incorporate structure-probing data into the 

prediction process without modifying the energy function. For example, mfold has a long 
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history of allowing flexible folding constraints added directly to the structures [79], which 

provides a natural way to utilize the structure-probing data. Instead of defining a particular 

energy term, RME [77] and RNApbfold [80] attempt to minimize the difference between the 

constraints defined according to structure-probing data and the base-pairing probabilities from 

the partition function [81]. 

Instead of modifying the structure prediction algorithms, structure-probing data can also help 

select suitable predicted structures using a sampling strategy. After candidate structures have 

been sampled from the structure ensemble and classified into clusters, the ‘sample-and-select’ 

method finds the structure with the minimum distance to the structure-probing data [71]. 

SeqFold chooses the structure centroid proximal to the constraints derived from structure-

probing data [82]. Different types of structure-probing data are filtered based on their p-values 

according to a hypergeometric test or some chosen cutoffs, to reduce the negative effects of 

potentially wrong constraints. Although SeqFold is able to incorporate multiple types of RNA 

structure-probing data, it has also been suggested that the structural information contained in 

the data has not been fully utilized [71]. 

Most existing RNA secondary structure prediction algorithms that incorporate structural 

probing data assume the data have already been properly cleaned and normalized during the 

preprocessing steps. Missing or low-quality structural constraints are ignored by setting the 

corresponding terms in the pseudo free energy [33,60,67,73,77,83,84] or other objective 

functions [74,78,80,85,68] to zero. Non-uniform signal distribution is not considered in many 
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early tools as the problem was not serious when the input data were from carefully calibrated 

RNA footprinting at that time. Since high-throughput sequencing protocols introduce more 

biases, methods that incorporate such data pre-process the raw data by either simple 

normalizations [3,19,25] or sophisticated statistical models [74,77,86]. If the quality of the raw 

data is too low, these methods may fail to correct the bias properly. Sampling a set of confident 

structures rather than getting a single best structure would likely give more robust results [82]. 

To make it easy to incorporate high-throughput sequencing data, StructureFold provides a user-

friendly platform for pre-processing raw RNA structure-probing data and calling external tools 

to predict RNA structures with the incorporation of the processed data [84]. 

Limitations of existing structure-probing data-guided RNA secondary structure 

prediction 

High-throughput structure-probing data have offered a great opportunity for RNA secondary 

structure prediction algorithms to explore previously challenging territories such as the 

structures of long mRNAs and non-coding RNAs. On the other hand, there is still ample room 

for better use of such data. Here we propose several aspects of existing structure prediction 

algorithms that can be further improved. 

Some algorithms that incorporate high-throughput structure-probing data rely on the data pre-

processing procedure to handle the effects caused by confounding factors in the data. However, 

some effects cannot be completely eliminated by data pre-processing alone. For example, data 

obtained from experiments involving enzymatic cleavage suffer from low resolution due to 



 

 

20 

 

large probe size [15,87], while chemical probing approaches such as DMS can only probe 

structures of particular types of nucleotide [14]. Therefore, in both cases, even after pre-

processing, structure-probing data would still contain uncertainty and missing values. 

Secondary structure prediction algorithms should explicitly handle these issues by proper 

modeling the background distribution of read counts at different nucleotides. 

Biases in standard RNA-seq data that are used for measuring expression levels of genes or 

transcript isoforms have been extensively studied in the literature [29–32], but how these 

biases affect high-throughput RNA structure-probing data is still incompletely known. It would 

be desirable for RNA secondary structure prediction algorithms to consider confidence values 

of structure-probing data for different bases/transcripts instead of assuming all values equally 

reliable. 

Finally, some RNA secondary structure prediction methods need to be tuned before they can 

incorporate structure-probing data. For example, prediction algorithms based on Turner’s free 

energy parameters [88], including all algorithms listed in Table 3 that involve an energy model, 

may need to be adjusted based on the experimental condition [61]. In general, all RNA 

structure prediction methods that assume an energy model should adjust its parameters based 

on the conditions of the structure-probing experiments. Moreover, while some existing 

structure prediction algorithms, such as CONTRAfold [63] and CentroidFold [89], can predict 

structures represented by a set of sub-optimal structures, whether incorporating structure-

probing data would improve their performance is still uncertain. One consideration is that an 
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algorithm should utilize the structure-probing data according to its assumption of whether the 

probed structure comes from a single “ensemble” structure of multiple sub-optimal structures 

with certain probabilities. MutualFold [85] is a method that can give a solution for two 

alternative structures by redefining the optimization problem with some added pseudo energy 

terms. Results on simulated data showed that the algorithm recovered a structural change 

often ignored by other methods [85]. Methods that can model even more complex cases are to 

be seen. 

Modeling RBP binding sites using high-throughput sequencing 

data for probing RNA-RBP interactions and RNA secondary 

structures 

Similar to the high-throughput sequencing data for probing RNA structures, RBP binding sites 

identified directly from raw high-throughput experiments usually contain false positives and 

false negatives. False positives, i.e., incorrect binding sites, could come from sequencing errors 

that mimic nucleotide substitutions caused by the experimental procedure, or background 

binding due to other RBPs. While sequencing errors could be partially corrected 

computationally by carefully checking the quality of mapped reads [51,90], correction of 

background binding requires additional data from control experiments [91], which were 

unfortunately not performed in some studies. False negatives, on the other hand, are much 

harder to correct. Binding sites on low-abundance transcripts are likely to be hidden by 
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background noise in experiments with a standard library size. Single nucleotide polymorphisms 

(SNPs) and incomplete annotation of the transcriptome could also reduce the amount of 

correctly aligned sequencing reads and lead to false negatives. It has been suggested that CLIP-

seq experiments should be paired with a matched RNA-seq experiment [48], which, though not 

able to recover the binding sites on low-abundance transcripts, could provide useful 

information for data normalization. 

A number of computational methods have been proposed for identifying true RBP binding sites 

from potentially noisy RIP- and CLIP-based data and analyzing the sequence motifs at these 

putative binding sites. Table 4 shows a summary of some of the recently proposed methods. 

These methods differ by the types of high-throughput protein-RNA interaction data 

incorporated, computational models for the RBP binding sites or the methods for finding them, 

and the features used for modeling or searching. Many of these methods also consider RNA 

secondary structure information during the analysis. Such information could conceptually come 

from either a pure sequence-based secondary structure prediction algorithm, a structure-

probing data-assisted prediction algorithm, or structure-probing data directly. 

[Place of Table 4] 

Methods mainly based on sequence motifs 

RNAcontext [92] was originally used to refine RNA binding sites identified from a type of 

microarray-based experiments called RNAcomplete [93] using a modified motif discovery 
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algorithm. The method is also applicable to data from RIP- or CLIP-based high-throughput 

experiments. For each RNA transcript in the dataset, RNAcontext obtains an RNA secondary 

structure profile predicted by Sfold [65] . The predicted structure of each base is represented by 

a probability that indicates whether the base is predicted to be paired (P) or unpaired and 

within a certain structural context, namely hairpin loops (L), unstructured regions (U), or 

miscellaneous regions (M). By encoding both sequence and structure information into the 

alphabet of pseudo bases, RNAcontext achieved better performance than previous methods 

that pay more attention to sequence patterns. Since the time cost of Sfold was high for long 

sequences, the performance of RNAcontext could possibly be improved by a faster structure 

profile prediction tool such as CapR [94]. Although RNAcontext still adopts the traditional way 

of motif discovery based on position-specific profiles (of both sequence and structure), it 

searches for motifs from a pool of training sequences, and further gives a model to estimate 

RBP binding affinity. Due to the assumption of position-specific profiles, dependencies among 

different positions are ignored in the model, which limits the power of RNAcontext in capturing 

base interactions in RNA structures [95]. 

TEISER [96] adopts a new way of encoding sequence-structure patterns by using a flexible motif 

model called context-free grammars. Unlike RNAcontext that treats sequence and structure as 

separate features, special characters are invented to represent the RNA sequence and pairing 

of nucleotides in the same grammar. The optional grammar for binding motifs is found by an 

exhaustive search. To reduce the high computational cost due to the great flexibility of the 

grammars, stringent size constraints are added to seed structural components, such as 4-7 
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bases for stem regions and 4-9 bases for loop regions. Potential binding motifs are then ranked 

by the mutual information (MI) between the motifs and candidate binding fragments from the 

sequencing data. Lastly, motifs with high MI values are refined by proper elongation rules to 

compensate for the previously added constraints. 

The above two methods mainly investigate sequence motifs at the potential binding sites 

directly detected in the high-throughput data. In contrast, MCarts [97] uses a hidden Markov 

model (HMM) with a rich feature set to model binding fragments with variable clustered 

binding motifs obtained from CLIP experiments. HMMs are statistical models that define the 

probabilities of entering a state initially, transiting from a state to another, and emitting an 

observation from a state. The states cannot be directly observed (i.e., “hidden”), and the 

probability for a given observation to come from each state is to be inferred from the observed 

data. MCarts defines binding regions and several other types of region into six states. The goal 

is to infer the probability that a genomic region is bound by an RBP based on its features.  The 

feature set contains: a) the distance to the nearest binding site on the same RNA, b) the 

accessibility of the region in terms of single strandedness, and c) the conservation of the motif 

as measured by branch length scores (BLS). Applying the trained HMM to the whole genome, 

half of the genomic regions were defined as binding sites. The use of HMMs allows MCarts to 

capture complex binding patterns such as clustered RBP-binding motifs, which cannot be 

modeled by a position weight matrix (PWM) as used by RNAcontext. On the other hand, MCarts 

can only be applied to study RBPs that recognize binding sites with a number of clustered 

motifs. MCarts was used to check the prediction performance of different combinations of 
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features. It was found that the full set of all features was the most powerful, indicating that 

incorporating more types of feature helped better model experimentally derived RBP binding 

sites. 

Methods based on supervised machine learning methods 

In early 2014, three new methods were proposed using different learning models and feature 

sets. Compared with methods for constructing sequence motifs, machine learning methods 

have greater power to model complex binding motifs such as regions with structural changes. 

On the other hand, machine learning methods require a sufficiently large set of training data for 

learning the models, and the learned models can be hard to interpret by having the important 

sequence and structural features of the binding sites abstracted in the mathematical formulas 

of the models. 

The first method is OliMoSS [98], which uses a support vector machine (SVM) [99] to model the 

relationships between RBP binding sites and both sequence features and features derived from 

predicted secondary structures based on PAR-CLIP data. The SVM classifier learns a hyperplane 

that separates binding sites from other regions in a feature space that can be either the input 

feature space or a high dimensional space defined by a kernel function. The input feature set 

for each region includes: a) motif scores obtained from a traditional PWM-based method, b) 

frequencies of all possible length-4 nucleotide sequences (i.e. tetranucleotides), and c) 

predicted structural profile such as folding energy, stem density and accessibility. Various 

combinations of the features were tested, and tetranucleotides alone could give the best 
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performance for many tested RBPs. It should be noted that the sequence motifs identified by 

this method were rich in adenines and uracils, and it is still unknown to what extent these 

results were affected by the experimental bias in the binding site sequencing data. 

GraphProt [95] also uses SVM but has a more sophisticated feature encoding scheme with a 

graph kernel. For an RNA fragment, each region identified by CLIP-seq is extended to 150 

nucleotides, and the probable secondary structures of the extended region is sampled and 

represented by a high-level shape abstraction using RNAshapes [100] The RNA sequence and its 

predicted structure are then encoded by a graph based on GraphClust [101]. The feature set, 

represented in graphs, is further mapped onto a kernel space using a neighborhood subgraph 

pairwise distance kernel function [102]. Models learnt from many CLIP-based data sets were 

successfully confirmed with similar motifs from the literature, and the models were further 

used to predict binding affinities with a high accuracy, even affinity data were not used in 

training. 

Different from the aforementioned methods that use predicted structures to model protein-

RNA interactions, ProbRNA [86] extract useful structural features from PARS data. Specifically, 

ProbRNA uses a mixture of Poisson linear model that fits raw V1 and S1 read counts from PARS 

experiments. For each nucleotide, its hidden state in the mixture indicates its local structural 

preference, which was shown to be more useful than some other computationally predicted 

structural features in predicting RBP binding sites. ProbRNA then constructs a Random Forest 

model [103] that uses the extracted structural feature together with sequence information in 
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each local window to predict whether the window overlaps an RBP binding site. A Random 

Forest model involves a set of decision trees constructed from different samples of the training 

data. The final prediction is made by combining the predictions of the individual decision trees. 

The use of ensemble of trees helps avoid over-fitting, a situation in which the constructed 

model only fits the training data but predicts poorly on unseen data. It was shown that 

ProbRNA could effectively distinguish RBP binding regions from shuffled regions that maintain 

the same nucleotide composition, suggesting that the model captured genuine properties of 

RBP binding sites rather than biases caused by the confounding factors. The results highlight 

the contribution of RNA structural information extracted from high-throughput probing data in 

identifying protein binding sites. 

Considerations when incorporating structural information into the identification of 

RBP binding sites 

As far as we know, ProbRNA is currently the only method that uses RNA structure-probing data 

to model binding sites of RBP directly without explicitly predicting a complete RNA secondary 

structure. Due to the confounding factors in existing high-throughput structure-probing data as 

discussed above, it has been shown in one of the former studies that predicted secondary 

structures of a pure sequence-based RNA structure prediction algorithm could be more useful 

than in vitro RNA structure-probing data when identifying in vivo RBP binding sites [8]. The 

results of ProbRNA, on the other hand, suggest that the in vitro structure-probing data could 
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also be useful in identifying in vivo RBP binding sites, although the useful structural signals need 

to be extracted using specifically-designed methods. 

Since structural changes can affect binding [53], structure-probing data obtained from the same 

experimental condition as the RBP binding data would be most ideal for studying the RNA 

structural features of RBP binding sites. In silico structures predicted based on sequence 

information alone and in vivo structures in the native cell environment represent two extremes 

on the horizon of RNA structures, while in vitro and in vivo structure-probing data could 

hopefully provide information for determining RNA structures closer to the in vivo ones that are 

recognized by RNA binding proteins. 

Some recent studies have looked for structural motifs at RBP binding sites using both 

experimental and computational methods. The hiCLIP method identifies RNA secondary 

structures interacting with RBPs transcriptome-wide [104]. Secondary structure contexts 

significantly enriched in RNAcomplete experiments were also cataloged [105]. 

Conclusion and future directions 

High-throughput sequencing has greatly extended the power of traditional RNA footprinting 

methods. Experimental methods for probing RNA structures and RBP binding sites are now 

available for large-scale studies at the whole-transcriptome level. 

Based on the discussions above, here we give some concrete recommendations to three types 

of people who deal with these two types of high-throughput sequencing data. 
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For experimentalists, it would be good to understand the limitations of the corresponding 

computational methods, and produce the additional experimental data necessary for effective 

data processing, such as those from control experiments for subtracting background signals and 

from RNA-seq experiments for normalizing read counts according to transcript levels. 

For data analysts, it would be good to understand the properties and confounding factors of 

the experimental data, such as the nucleotide modification preference of DMS and the effect of 

RNA abundance on probing efficiency. Based on these properties, an analyst should choose 

appropriate analysis tools that can properly handle them. When tools specifically designed for a 

particular type of data are available, they are usually preferred over standard tools for general 

sequencing experiments. 

For developers of new analysis methods, it would be good to have a general framework that 

facilitates the analysis of different types of structure-probing (such as DMS, PARS and SHAPE) or 

RBP-binding (such as HITS-CLIP, iCLIP and PAR-CLIP) data, but at the same time allows 

algorithms specific to certain data types to be plugged in as modules to particular steps of the 

pipeline. It would also be good to have different modes of running the software depending on 

the availability of additional data, and provide clear explanations to the user regarding the 

significance of these additional data and the limitations of the analysis methods when they are 

unavailable. 

Regarding future directions, one important new direction is the combined study of both RNA 

structures and RBP binding. In recent protein interaction profile sequencing (PIP-seq) 
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experiments [9,10], RNA secondary structures and RNA binding sites are probed in the same 

pipeline by applying different treatments on the same RNA sample. Applying footprinting on 

both bound and unbound RNAs offers a broader view of the function of RNA secondary 

structures in post-transcriptional regulations. 

More generally, it would be desirable to integrate multiple sources of RNA structure-probing 

data and RBP binding data, existing RNA structure prediction algorithms and motif discovery 

algorithms all together to maximize the accuracy of computational models. For example, when 

modeling protein-RNA binding sites, structural features can be derived from the RNA structure-

probing data and RNA structure prediction algorithms, while sequence features can be derived 

from motif discovery algorithms. The noisy RBP binding sites obtained from high-throughput 

RBP binding data can serve as an initial training set for learning a model of these binding sites 

using the derived features. From the high-confidence predictions of the model, structural and 

sequence features commonly shared by these predicted regions could in turn be discovered, 

which could iteratively refine both the model and the useful features for characterizing RBP 

binding sites. 

New data processing and modeling tools are required to make better use of the large amount 

of data that could suffer from technical biases and experimental noise. Careful correction of 

these confounding factors will be the key to successful data processing methods. A lot of 

improvements have been seen in the latest work for integrating RNA structure-probing data 

into classical RNA secondary structure prediction algorithms. The same trend of incorporating 
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high-throughput experimental data into existing computational algorithms is expected to 

become more and more popular for modeling RBP binding sites. 

Key Points 

 High-throughput sequencing techniques extend traditional RNA foot-printing methods to 

provide data for whole-transcriptome study of RNA secondary structures. 

 These high-throughput RNA structure-probing data can be used alone or integrated into 

RNA secondary structure prediction algorithms to infer RNA secondary structures. 

 Likewise, immuno-precipitation and crosslinking coupled with high-throughput sequencing 

can help identify protein-RNA interactions and the exact binding sites. 

 Both types of sequencing data contain various types of biases, and therefore require 

computational methods for normalizing the data and extracting useful information for 

determining RNA structures and RNA-protein interactions. 

 Since RNA-protein binding could depend on the structures of the RNAs and in turn 

structure-probing efficiency/accessibility could also be affected or even biased by protein 

binding in vivo, integrating the two types of sequencing data could lead to better modeling 

of RNA-protein interactions in vivo, providing a broader view of the landscape of post-

transcriptional regulation. 
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Figure 1: Analysis workflow of RNA structures at RBP-binding sites. (a) Some contemporary RNA 

secondary structure prediction algorithms can incorporate both the information in RNA 

sequences and high-throughput RNA structure probing data in their prediction process. (b) 

Many methods for analyzing high-throughput RBP binding data take RNA sequences and/or 

predicted RNA structures to correct for the biases in the binding data, and identify both RBP-

transcription interacting pairs as well as the binding locations of the RBPs on their bound 
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transcripts. (c) A possible alternative approach is to input RNA structure probing data directly 

into RBP binding analysis methods without predicting complete RNA secondary structures. 
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Table 1: High-throughput sequencing methods for probing RNA structures. The methods are ordered by 

the size of the probe they use. 

Probe (size 
in Dalton) 

Method 
Protocol attributes Data attributes 

Advantages Limitations Technical biases Experimental noise 

DMS 
(126Da) 

DMS-seq 
[25], 

structure-seq 
[24], Mod-

seq [26] 

High resolution 
and able to 

work both in 
vivo and in vitro 

Mainly 
probing A and 
C bases only 

[25] 

Signals are most 
enriched at 

solvent 
accessible 

positions [25] 

Different chemical 
modification 

efficiencies for 
different types of 
nucleotide [15] 

IM7 
(222Da) 

SHAPE-seq 
[22] 

High resolution 
and able to 

work both in 
vivo and in vitro 

Difficult for 
genome-wide 

screening 
[12] 

Weak signals 
near 5’ end due 

to natural 
polymerase 

drop-off [34] 

Non-uniform 
distribution of 

reactive bases [34] 

RNase V1 
(15,900Da) 

PARS 
[3,17,18], 
ssRNA-seq 

[21] 

Able to probe 
paired bases 
and estimate 

folding energies 
For in vitro 
studies only 

[3,106] 

No signals at 3’ 
end due to the 
blind tail [3,18] 

Low resolution due 
to steric hindrance 

[15,87] 

RNase ONE 
(27,000Da) 

dsRNA-seq 
[20,21] 

Able to probe 
unpaired bases 

Nuclease S1 
(32,000Da) 

PARS [3,18] 

Nuclease P1 
(36,000Da) 

FragSeq [19] 
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Table 2: High-throughput sequencing protocols for identifying RBP binding sites 

Method Brief technical description Advantages Limitations 

RIP-seq [43] RNA immuno-precipitation (RIP) High sensitivity 
Containing indirect 

interactions, high noise 
level [49] 

HITS-CLIP [40] 
UV cross-linking (CL) and immuno-

precipitation (IP) 
Wide applications 

May contain nucleotide 
biases [8,48] 

PAR-CLIP [42] 
Photoactivatable-ribonucleoside 

(PAR) with CLIP 

Longer UV 
wavelength and 

better cross-linking 
efficiency 

iCLIP [41] 
CLIP at individual-nucleotide 

resolution 
High resolution 

More steps in the 
experimental protocol 

[49] 

(Baltz et al., 
2012) [45] 

Photocrosslinking and RNA pull-
down by oligo(dT) beads 

Identifying binding 
sites of all RBPs 

Only for RNAs with poly-A 
tails and cannot tell the 

RBP that binds each 
binding site 

(Castello et al., 
2012) [46] 

PAR and complementary cross-
linking, using oligo(dT) to select 

RNAs 

gPAR-CLIP [47] 
Using oligo(dT) to select RNAs, and 

biotin to select proteins 
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Table 3: Structure probing data integrated into RNA secondary structure prediction methods 

Sequencing 
data for 

RNA 
structures 

Structure 
prediction 
approach 

Software 
/module 

Backend 
package 

Way of using 
structure probing 

data 
Special features 

DMS 
Minimum 

free energy 
(MFE) 

Fold --
constraint 

[33] 
RNAstructure 

Free energy 
penalty 

Using DMS signals 
to define binary 

(paired or 
unpaired) 

constraints 

DMS MFE 
Fold --DMS 

[76] 
RNAstructure 

Pseudo energy 
term 

Can utilize 
quantitative signals 

of DMS data 

DMS or 
SHAPE 

MFE 
StructureFold 

[84] 

RNAstructure 
and 

ViennaRNA 

Pseudo energy 
term 

Providing functions 
to pre-processing 
structure-probing 

data 

SHAPE MFE 
Fold --SHAPE 

[73] 
RNAstructure 

Pseudo energy 
term 

Can utilize 
quantitative SHAPE 

signals 

SHAPE 

Maximize 
expected 
accuracy 

(MEA) 

RNApbfold 
[80] 

ViennaRNA 
Discrepancy 
minimization 

Treating structure-
probing data as 

probabilistic inputs 

SHAPE MEA RNAsc [78] RNAstructure 
Pseudo energy 

term for all 
nucleotides 

Enforcing 
constraints to all 

bases 

SHAPE MFE 
ShapeKnots 

[74] 
RNAstructure 

Pseudo energy 
term for 

nucleotides and 
pseudoknots 

Can predict 
structures with 

pseudoknots 

SHAPE MFE 
MutualFold 

[85] 
- 

Mutual 
constraints 

Can predict 
alternative RNA 

structures 

SHAPE or 
Enzymatic 
cleavage 

Sample and 
select 

SeqFold [82] Sfold 
Centroid of the 

closest structure 
cluster 

Can handle very 
noisy structure-

probing data 

Enzymatic 
cleavage 

MFE 
Fold --

constraint 
[60] 

RNAstructure 
Free energy 

penalty 

Using structure-
probing data to 
define binary 

constraints 

Enzymatic 
cleavage 

MFE 
Parameter 
AUX [68] 

Mfold Force constraints 
Allowing 

constraints to be 
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specified in flexible 
ways 

Enzymatic 
cleavage 

MFE 
RNAfold --
constraint 

[67] 
ViennaRNA 

Pseudo energy 
term 

Using structure-
probing data to 
define binary 

constraints 

DMS, 
SHAPE or 
Enzymatic 
cleavage 

MEA RME [77] RNAstructure 

Pseudo energy 
term and 

discrepancy 
minimization 

Treating structure-
probing data as 

probabilistic inputs 
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Table 4: Large-scale RBP binding data used in RBP binding motif modeling methods 

Sequencing 
data for RBP 
binding sites 

Software 
Computational 

models/ 
methods 

Features for 
modeling 

Advantages Limitations 

RIP-seq or 
CLIP-seq 

RNAcontext 
[92] 

Cost function 
minimization 

Sequences, and 
predicted 
structural 

preferences 
(Sfold) 

Easy to 
understand the 

motifs 

Using only 
one-

dimensional 
structural 
profiles, 

leaving pairing 
relationships 

between bases 
unused [95] 

HITS-CLIP TEISER [96] 
Mutual 

information 

Context-free 
grammars for 

both sequence 
and structural 
information 

Use of a 
flexible 

context-free 
grammar 

framework, 
exhaustive 
search of 

motifs 

Finding only 
short local 
motifs [8] 

HITS-CLIP MCarts [97] 
Hidden Markov 

model 

Distance to 
neighbor sites, 
accessibility of 
tetramers, and 

conservation (BLS) 

Flexible model, 
can capture 

clustered 
motifs 

Limited to 
RBPs that 
recognize 

binding sites 
with clustered 

motifs 

gPAR-CLIP or 
PAR-CLIP 

ProbRNA 
[86] 

Random forest 

Sequences, 
predicted 
secondary 
structure 

(RNAfold), and 
PARS scores (MPL) 

Can utilize 
RNA-structure 

probing data to 
derive 

structural 
features 

Not trivial to 
understand the 
sequence and 

structural 
features of the 
binding sites 
abstracted in 
the machine 

learning 
models 

PAR-CLIP OliMoSS [98] 
Support vector 

machine 

Sequences, 
motifs, and 
predicted 
secondary 
structure 
(RNAfold) 

Able to utilize 
known motifs 
and discover 
new motifs 

HITS-CLIP, 
PAR-CLIP, or 

iCLIP 

GraphProt 
[95] 

Support vector 
machine with a 

graph kernel 

Sequence, 
Predicted 
secondary 
structure 

Involving a rich 
set of features 

and capture 
relational 
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(RNAshape) information 
using a graph 

kernel 

 


