
Efficient Clustering of Uncertain Data

Wang Kay Ngai, Ben Kao, Chun Kit Chui
Dept. of Computer Science

The University of Hong Kong
wkngai,kao,ckchui@cs.hku.hk

Reynold Cheng
Department of Computing

Hong Kong Polytechnic University
csckcheng@comp.polyu.edu.hk

Michael Chau
School of Business

The University of Hong Kong
mchau@business.hku.hk

Kevin Y. Yip
Dept. of Computer Science

Yale University
yuklap.yip@yale.edu

Abstract

We study the problem of clustering data objects whose
locations are uncertain. A data object is represented by an
uncertainty region over which a probability density function
(pdf) is defined. One method to cluster uncertain objects of
this sort is to apply the UK-means algorithm, which is based
on the traditional K-means algorithm. In UK-means, an ob-
ject is assigned to the cluster whose representative has the
smallest expected distance to the object. For arbitrary pdf,
calculating the expected distance between an object and a
cluster representative requires expensive integration com-
putation. We study various pruning methods to avoid such
expensive expected distance calculation.

1. Introduction

In many applications, data contains inherent uncertainty.
A number of factors contribute to the uncertainty such as
the random nature of the physical data generation and col-
lection process, measurement error, and data staling. As an
example, consider the problem of clustering mobile devices
continuously according to the periodic updates of their lo-
cations. One application of the clustering is the selection
of a device as the leader for each cluster. A leader’s role
is to collect data (such as location data) from its cluster
members and to communicate with a server or a base sta-
tion with batched updates. In this way, most communica-
tions are short-ranged messages between cluster members
and their leaders. In this example, we observe that data, as
received by a server, contains the following type of uncer-
tainty:

This research is supported by Hong Kong Research Grants Council
grant HKU 7134/06E.

• The physical devices that determine vehicle locations
are accurate only up to a certain precision.

• The current locations can only be estimated based on
the last reported values. That is, data is always stale.

As another example, an animal-tracking device might re-
port the location of an animal periodically. One can compile
the location data into a histogram that indicates the rela-
tive probability of the animal being located at a particular
region. The whereabouts of the animal can then be rep-
resented by a probability-density function (pdf). Applying
clustering on the data can reveal interesting insights on the
relationship and social behaviors of the animals.

In this paper we study the problem of clustering objects
with multi-dimensional uncertainty. In particular, an object
is not a simple point in space, but is represented by an uncer-
tainty region over which a pdf is defined. Formally, we con-
sider a set of n objects oi, 1 ≤ i ≤ n in an m-dimensional
space. Object oi is represented by a pdf fi : IRm → IR
that specifies the density of each possible location of object
oi. The methods to be discussed in this paper do not rely on
any special forms of fi, but only require that for each object
oi, there is a finite region Ai such that ∀x /∈ Ai, fi(x) = 0.
This requirement allows each object to be approximated by
a finite bounding box.

The goal of clustering is to group the objects into k clus-
ters, such that the total expected distance from the objects to
a representative point of their corresponding clusters is min-
imized. Going back to our mobile-device example again, if
peer-to-peer transmission cost is proportional to the trans-
mission distance, then the above goal is equivalent to mini-
mizing the expected transmission cost. So, suppose ci rep-
resents the cluster to which object oi belongs, and pci is
the representative point of cluster ci, we want to find the
values of pci’s and ci’s such that the objective function

∑n
i=1 ED(oi, pci) =

∑n
i=1(

∫
fi(x)d(x, pci)dx) is mini-

mized, where ED is the expected distance based on a metric
d (e.g., Euclidean distance).

In real applications, there are practical ways to specify
the pdfs. For example, measurement errors can be modeled
by Gaussian distributions with the means and variances esti-
mated from sample data with known real locations obtained
by some external means [19]. Also, uncertainty due to data
staling can be modeled according to the last reported lo-
cation and velocity and the vehicle’s properties (e.g., maxi-
mum speed) [19]. Assuming the pdfs fi to be non-zero only
over a finite region is thus reasonable since the density func-
tions drop super-linearly (e.g., exponentially for Gaussian
distributions) so that the locations outside a certain region
have negligible contribution to expected distances.

We have discussed in a separate study the importance of
considering data uncertainty explicitly in clustering with a
focus on the quality of the clustering results [2]. And an
algorithm called UK-means was proposed. The algorithm
was applied to moving object uncertainty and was shown
to improve accuracy of the clusters formed. Uniform dis-
tribution was assumed for the uncertainty associated with
the data used. While the method can be generalized to other
distributions, there are significant efficiency issues that have
not been addressed. This paper, however, focuses on effi-
ciency issues. Given a fixed clustering process, we study
ways to reduce the running time. Efficiency is of particular
importance in real time applications such as the one about
mobile devices. It is also important when a large amount of
object data is involved.

Traditional clustering process often requires the defini-
tion of a distance metric. For example, in K-means cluster-
ing [14], an object o is assigned to a cluster c such that the
distance between o and a representative of c is the smallest
among all clusters. We remark that with multi-dimensional
uncertainty, an object is no longer a single point in space
but is represented by a pdf over an uncertainty region. The
definition of distance thus has to be revisited. In this paper
we choose to use expected distance as the distance measure.
As we will explain, the expected distance metric not only
provides an intuitive way of handling uncertainty, but also
enables the development of efficient clustering algorithms.
For arbitrary pdfs, computing the expected distance of an
uncertain object and a cluster representative requires very
expensive integration operations, which are often hundreds
or even thousands of times more expensive than a simple
distance computation. As we will discuss later in this pa-
per, traditional clustering techniques have to be refined so
that the algorithms become computationally feasible. One
of the major contributions of this paper is about pruning
techniques that can significantly reduce the number of ex-
pected distance calculations in the clustering process.

The rest of this paper is organized as follows. Section 2
discusses some related work on uncertain data mining and
in particular uncertain data clustering. We discuss some is-
sues that are not dealt with in previous studies and how we
tackle them. Section 3 describes a basic clustering algo-
rithm for uncertain data based on K-means. We discuss
the performance bottleneck of the algorithm, and describe
a simple method for speeding up the clustering process. In
Sections 4 and 5 we propose four methods for further im-
proving performance. Section 6 demonstrates the effective-
ness of the methods by extensive experiments. Section 7
discusses some observations and concludes the study.

2. Related work

There has been significant research interest in data un-
certainty management in recent years. Data uncertainty
has been broadly classified into two types. The first type
concerns existential uncertainty. For example, a tuple in
a relational database could be associated with a probability
value that indicates the confidence of its presence [16]. This
“probabilistic database model” has been applied to semi-
structured data and XML [10]. The second type concerns
value uncertainty. Under this type, a data item is mod-
eled as a closed region which bounds its possible values,
together with a pdf of its value [3, 19]. This model can
be used to quantify the imprecision of location and sensor
data in a constantly evolving environment, as in our mov-
ing vehicles example. For value uncertainty, most work has
been devoted to “imprecise queries,” which provide proba-
bilistic guarantees over correctness of answers. For exam-
ple, in [4], indexing solutions for range queries over un-
certain data have been proposed. The same authors also
proposed solutions for aggregate queries such as nearest-
neighbor queries in [3]. Notice that all these works have
applied the study of uncertain data management to simple
database queries, instead of to the relatively more compli-
cated data analysis and mining problems.

Data clustering is one of the most studied areas in data
mining research. Depending on application, there are sev-
eral goals of clustering: to identify the (locally) most proba-
ble values of the model parameters [5] (e.g., means of Gaus-
sian mixtures), to minimize a certain cost function (e.g. the
total within-cluster squared distance to centroid [14]), or to
identify high-density connected regions [8] (e.g., areas with
high population density). The current study falls into the
second category.

On the topic of clustering uncertain data, Hamdan and
Govaert have addressed the problem of fitting mixture den-
sities to uncertain data for clustering using a modified
Expectation-Maximization (EM) algorithm [9]. They sup-
posed that data observed were the sampling results from a
distribution mixture and aimed to find the maximum like-

lihood estimation of the mixture model parameters. The
algorithm is customized for EM and thus cannot be readily
applied to other clustering situations. Clustering on inter-
val data has also been studied. Different distance measures,
like city-block distance or Minkowski distance, have been
used in measuring the similarity between two intervals [11].
The pdfs of the intervals are not taken into account in most
of these metrics. Another related area of research is fuzzy
clustering, which has been long studied in fuzzy logic [17].
In fuzzy clustering, a cluster is represented by a fuzzy sub-
set of a set of objects. Each object has a “degree of be-
longingness” for each cluster. In other words, an object
can belong to more than one cluster, each with a different
degree. The fuzzy c-means algorithm is one of the most
widely used fuzzy clustering methods [6]. Different fuzzy
clustering methods have been applied on normal or fuzzy
data to produce fuzzy clusters [18]. While their work fo-
cuses on creating fuzzy clusters (i.e., each object can belong
to more than one cluster with different degrees), our work
is developed for hard clustering based on the uncertainty
model of objects, in which each object can only belong to
one cluster.

Recently, there have been studies on density-based clus-
tering of uncertain data. The FDBSCAN [12] and FOP-
TICS [13] algorithms are based on DBSCAN [8] and OP-
TICS [1], respectively. Instead of identifying regions with
high density, these algorithms identify regions with high ex-
pected density, based on the pdfs of the objects.

3. Basic algorithm and min-max-dist pruning

In this section we describe two algorithms for clustering
uncertain data. The first one is called UK-means (which
stands for Uncertain K-means) [2]. UK-means basically
follows the well-known K-means algorithm except that it
uses expected distance when determining which cluster an
object should be assigned to. The second algorithm uses
the idea of min-max distance pruning in UK-means with
the objective of reducing the number of expected distance
calculations.

UK-means starts by randomly selecting k points as clus-
ter representatives. Each object oi is then assigned to the
cluster whose representative pj has the smallest expected
distance from oi (ED(oi , pj)) among all clusters. After the
assignment, cluster representatives are recomputed as the
mean of the centers of mass of the assigned objects. The
two steps form an iteration, which is repeated until the con-
vergence of the objective function.

Computing the expected distance, ED(oi, pj), requires
the computation of the integral

∫
fi(x)d(x, pj)dx, where

fi(x) is the probability density of a point x in the uncer-
tainty region of oi, and d(x, pj) is the distance between x
and pj . In practice, the pdf is approximated by dividing the

uncertainty region into a number of grids. The probability
density of a sample point in each grid is recorded. To cal-
culate the integral, we calculate the distance of each sample
to pj , and then approximate the integral by finding the sum
of the distances, weighted by the corresponding probability
density of the sample points. For accuracy, thousands of
samples are needed. Expected distance calculation is thus a
computationally expensive operation.

Not only is expected distance expensive to compute, it is
also one of the most frequently executed operations. This
is because an expected distance is calculated between each
object and cluster representative pair for each iteration. That
is to say, if UK-means iterates t times for a set of n objects
to form k clusters, UK-means would compute a total of nkt
expected distances.

p1

oi
p2

p3

16

5

11

7
14

(a) An object with a small
uncertain region.

p1

oi
p2

p3

18

5

13

6

14

(b) An object with a large
uncertain region.

Figure 1. The min-max-dist pruning method.

To improve efficiency, a pruning technique based on the
concept of min-max distance can be used to avoid unneces-
sary expected distance calculations. The basic idea is to use
inexpensive distance calculations to identify cluster repre-
sentatives that cannot be the closest one to an object. Hence,
the expected distances between those representatives and
the object need not be computed. More specifically, for each
object oi, we define a minimum bounding rectangle (MBR)
outside which the object has zero (or negligible) probability
of occurrence. Now, for each cluster representative pj , we
compute the minimum distance (MinDist ij) and maximum
distance (MaxDist ij) between pj and the MBR of oi (see
Figure 1a). Among all the maximum distances, the smallest
one is called the min-max distance d̂i between oi and the
cluster representatives. For example, in Figure 1a, we have
MinDist i1 = 1, MinDist i2 = 5, MinDist i3 = 7, MaxDist i1

= 6, MaxDist i2 = 11 and MaxDisti3 = 14. Since p1 gives
the smallest maximum distance, we have d̂i = 6. One can
show that any cluster representative pj whose minimum dis-
tance MinDist ij is larger than d̂i cannot be the one with the
smallest expected distance from oi. That is,

ED(oi, pj) ≥ ED(oi, pj∗), (1)

where pj∗ is a cluster representative with the smallest maxi-
mum distance (i.e., MaxDist ij∗ = d̂i). For example, in Fig-

ure 1a, since MinDist i3 = 7, which is larger than d̂i = 6,
p3 cannot be the representative closest to oi and thus the
expected distance ED(oi, p3) needs not be computed.

For those cluster representatives that cannot be pruned,
their expected distances from object oi are calculated. Ob-
ject oi is then assigned to the one with the smallest ex-
pected distance. Note that during this process, whenever
an expected distance ED(oi, pj) of a cluster representative
pj is computed, we can refine d̂i to min(d̂i,ED(oi, pj)).
Any remaining cluster representative pj′ can be pruned if
MinDist ij′ > d̂i. This potentially reduces the number of
expected distance calculations further. We call the above
method the min-max-dist pruning method.

The min-max-dist pruning method is effective in saving
expected distance calculations of cluster representatives that
are much farther away from the closest one. However, it
suffers when the MBR gives poor distance estimates. This
occurs when the uncertainty region of an object is large.
For example, in Figure 1b, the maximum distance of p1

is increased to 8 due to a larger MBR. The min-max dis-
tance d̂i is now 8. This new min-max distance is no longer
smaller than MinDist i3, and thus representative p3 cannot
be pruned and ED(oi, p3) needs to be computed.

Note that the pruning effectiveness of min-max-dist
pruning relies on the MinDist and the MaxDist bounds.
The closer they are to the true expected distance, the more
effective is the pruning. We will describe several methods
for achieving tighter bounds in the following two sections.

4. Improving distance bounds

In [15], the triangle inequality is applied to derive an up-
per and lower bound of a distance between two points in
order to reduce many distance computations between data
points in a hierarchical clustering process of conventional
data. In this section we extend such idea to derive a good
upper and lower bound of an expected distance between a
data object and a cluster representative point in order to re-
duce expected distance computations in UK-means. Let y
be a point called an anchor point. Since the distance func-
tion d is a metric, by the triangle inequality, we can de-
rive the following upper bound for the expected distance
between an object oi and a cluster representative pj :

ED(oi, pj) ≤ ED(oi, y) + d(y, pj). (2)

If the expected distance ED(oi, y) between the object oi

and the anchor point y is pre-computed, then by Inequal-
ity 2, an upper bound of the expected distance ED(oi, pj)
can be computed using only one inexpensive distance calcu-
lation between y and pj . We call this upper bound estima-
tion the Upre method (for “Upper bound estimation based
on Pre-computed Expected Distances”).

Method Upre can be integrated into the min-max-dist
pruning strategy easily. Recall that with the basic min-max-
dist pruning, we estimate an upper bound of ED(oi, pj) by
finding the maximum distance between a cluster represen-
tative pj and the MBR of an object oi. Let us call this bound
UMBR,ij . With Upre , we simply compare the upper bound
as determined by Inequality 2 with UMBR,ij and take the
smaller one as MaxDist ij . The rest of min-max-dist prun-
ing is the same as what we have described in Section 3.

We note that since the upper bound from Inequality 2
is used as MaxDist ij only if it gives a tighter bound, d̂i is
always at least as good (i.e., small) as the value obtained
without using the Upre method, and is potentially better. As
a consequence, potentially more cluster representatives will
have their MinDist’s > d̂i and thus more of them can be
pruned, leading to a more efficient algorithm.

Moreover, the use of Upre is not restricted to one anchor
point y. One can use multiple anchor points and pick the
one that gives the best MaxDist ij upper bound. The trade-
off is that the more anchor points used, the tighter is the
bound (and hence a higher pruning potential) at the expense
of a higher pre-computation cost. We will elaborate on this
point further later in this section.

Similarly, a lower bound for ED(oi, pj) can be derived:

ED(oi, pj) ≥ |d(y, pj)− ED(oi, y)| (3)

Again, if the expected distance ED(oi, y) between ob-
ject oi and anchor point y is pre-computed, then a lower
bound of ED(oi, pj) can be determined by an inexpensive
computation of d(y, pj). We call this lower bound esti-
mation method Lpre . Method Lpre can be incorporated
into min-max-dist pruning in a way similar to how we use
Method Upre . When determining MinDist ij of a cluster
representative pj and an object oi, we compare the lower
bound |d(y, pj)−ED(oi, y)| against the minimum distance
between pj and the MBR of oi. The larger value is taken
as MinDist ij . Since the lower bound MinDist ij is poten-
tially tighter (i.e., larger), a cluster representative pj is more
likely be pruned due to MinDist ij > d̂i.

While Methods Upre and Lpre can potentially increase
the pruning power, they come with a cost. If r anchor points
are used, a total of nr expected distances need to be pre-
computed. The two methods would induce an overall saving
only if the total number of additional representatives being
pruned in all iterations is larger than nr. It is therefore im-
portant to choose a set of anchor points that has sufficient
pruning power, but is small enough to avoid large overhead.

Let us revisit the upper bound derived by Method Upre

(Inequality 2). To make the upper bound as tight as possi-
ble, we want both ED(oi, y) and d(y, pj) to be small. We
now show that the anchor point y that minimizes ED(oi, y)
must lie inside the MBR of oi. Suppose that a point y is

outside the MBR of oi and y∗ is the point on the bound-
ary of the MBR that is closest to y. There are two possi-
ble cases, either the line y∗y is perpendicular to an edge
of the MBR (Figure 2a), or y∗ is at a corner of the MBR
(Figure 2b). Consider any point x inside the uncertainty re-
gion of oi. We observe that if x lies on the line y∗y (i.e.,
x = z), then d(x, y) > d(x, y∗); Otherwise, d(x, y) =

d(x,z)

cos 6 yxz
> d(x,z)

cos 6 y∗xz
= d(x, y∗). Therefore in all cases,

ED(oi, y) =
∫

fi(x)d(x, y)dx >
∫

fi(x)d(x, y∗)dx =
ED(oi, y

∗), which proves that the point y that minimizes
ED(oi, y) must be within the MBR of oi.

y

y*

xz

(a)

y*

x
z

y

(b)

Figure 2. Proving that the point minimizing
the expected distance to an object must be
within its MBR.

Unfortunately, for a general pdf, there are no simple
ways to compute the exact location of the point that min-
imizes the expected distance, so a reasonable scheme is
to pick various anchor points within the MBR of oi. An-
other consideration is that we also want d(y, pj) to be small.
However, the location of pj is not known in advance at the
time when the anchor points are picked and their expected
distances from oi are pre-computed. A reasonable option
is thus to pick anchor points on the different sides of the
object’s MBR. Depending on the number of anchor points
allowed, we have chosen several reasonable sets of anchor
points. In a one-point scheme, the center of the MBR is
picked. In a five-point scheme, the center of the four faces
of the MBR are also used as it is guaranteed that for any rep-
resentative outside the MBR, at least one of the four points
would be closer to the representative than the center does.
In a nine-point scheme, the four corners of the MBR are
also used to cater for cases in which the representative is
closer to a corner than to the four faces. Figure 3 illustrates
the choice of anchor points.

The above schemes are also reasonable choices for
Method Lpre . This is because when a cluster representa-
tive pj is outside the MBR of oi, we want ED(oi, y) to be
small and d(y, pj) to be large (see Inequality 3). The former
goal is achieved by picking anchor points within the MBR
of oi, and the latter goal is achieved by trying anchor points

oi

(a) One-point scheme

oi

(b) Five-point scheme

oi

(c) Nine-point scheme

Figure 3. Anchor point selection schemes.

at different sides of the MBR. In Section 6 we will show
empirically the cost and benefits of the various schemes of
anchor point selection.

Finally, we remark that Methods Upre and Lpre are es-
pecially useful in applications for which some of the ob-
jects change their pdfs and/or locations while some others
do not, and that updates of the clustering results are needed
periodically. In this scenario, the cost of pre-computing the
expected distances of static objects can be amortized over
the multiple executions of the clustering algorithm. Some
of the pre-computation overhead can thus be ignored.

5. Reusing expected distance calculations

Let us consider Inequality 2 again. In Section 4, we dis-
cussed why we picked anchor points within the MBR of an
object oi. The idea was to make the term ED(oi, y) as small
as possible so that the upper bound was tight. Inequality 2
suggests that another way of making the bound tight is to
make d(y, pj) as small as possible. That is to say, we want
an anchor point to be as close to the cluster representative
pj as possible. Now the question is which point y is close
to pj while its expected distance to oi, namely, ED(oi, y)
is readily available? A reasonable answer is the location of
the representative of cluster j in the previous iteration of
the clustering process. Such idea is used in [7] to derive a
lower bound of a distance between a data point and a cluster
representative point in K-means clustering of conventional
data. In this section we extend the idea to derive both upper
and lower bounds of the expected distances.

Consider a cluster j whose representative is pj during a
particular iteration of the clustering process. Let p′j be the
updated representative of cluster j in the next iteration. We
note that the distance between pj and p′j , i.e., d(pj , p

′
j) is

likely to be small. This is especially true during the later
iterations of the clustering process when cluster representa-
tives shift by small distances only.

Given an object oi, recall that min-max-dist pruning de-
termines if a cluster representative pj could be pruned by
comparing MinDist ij against the min-max-dist threshold

d̂i. There are two cases:

1. MinDist ij > d̂i. In this case, pj is pruned and
ED(oi, pj) is not calculated. In the next iteration,
we compare MinDist ij′ against (an updated but likely
similar) d̂i. Since pj and p′j are likely to be close to
each other, MinDist ij′ is likely to be similar in value
to MinDist ij . Hence, p′j is likely to be pruned by min-
max-dist pruning in the next iteration.

2. MinDist ij ≤ d̂i. In this case, pj cannot be pruned
and min-max-dist pruning will calculate ED(oi, pj).
In the next iteration, min-max-dist pruning needs an
upper bound of ED(oi, p

′
j). This upper bound can be

easily obtained by taking pj as the anchor point for
Inequality 2.

For Case (2), triangle inequality gives

ED(oi, p
′
j) ≤ ED(oi, pj) + d(pj , p

′
j) (4)

Since ED(oi, pj) was calculated in the previous itera-
tion, an upper bound of ED(oi, p

′
j) can be obtained by

an inexpensive distance calculation d(pj , p
′
j). We call this

method Ucs , which stands for “upper bound estimation
based on Cluster Shift.”

Likewise, a good lower bound of ED(oi, p
′
j) can also be

obtained by taking pj as the anchor point:

ED(oi, p
′
j) ≥ |ED(oi, pj)− d(pj , p

′
j)| (5)

We call this method Lcs .
A big advantage of Methods Ucs and Lcs is that they

require no pre-computation of expected distances that was
needed by Methods Upre and Lpre .

The four methods Upre , Lpre , Ucs and Lcs are all inde-
pendent of each other. One can choose to apply any com-
bination of the four methods. For notational convenience,
we concatenate the methods’ names to represent strategies
that combine a number of such methods. So, for example,
UpreLpreLcs represents a method that combines Method
Upre , Method Lpre and Method Lcs together. In general,
Upre and Lpre provide effective pruning during early itera-
tions of the clustering process when a relatively large num-
ber of objects are still migrating among multiple clusters.
Methods Ucs and Lcs , on the other hand, give significant
pruning during late iterations when cluster representatives
shift by only small distances across iterations.

6. Experiments

As we have explained, expected distance calculations are
the performance bottleneck of the algorithms. Therefore,
we measure the effectiveness of the pruning methods based
on the average number of expected distance calculated per

Table 1. Parameters and baseline values.

Parameter Description Value
n number of objects 20,000
k number of clusters 49
d maximum length of an MBR’s side 10
s number of sample points 196

object per iteration in a clustering process. We denote this
number by NED . Note that under the brute-force imple-
mentation of UK-means, during each iteration, the algo-
rithm calculates the expected distance of an object to every
single cluster representative. Therefore, NED = k for the
brute-force algorithm, where k is the number of clusters.
The value k is thus the baseline reference when we discuss
the effectiveness of the other methods.

6.1. Settings

In our experiment, we evaluate the pruning methods on
two types of datasets: one generated with intrinsic cluster
patterns, the other without. As we will see later, the general
observations that we draw about the relative performance of
the pruning methods do not differ significantly across these
two models. In this paper we focus on the latter case.

Data generation follows the following procedure. All ob-
jects are to be located in a 100× 100 2D space. Each object
is first represented by an MBR with random side lengths.
For datasets without cluster patterns, the MBRs are simply
randomly positioned in the space. For datasets with cluster
patterns, k points are chosen randomly as the cluster cen-
ters such that the distance between any two of them is at
least 100

2
√

k
. Then the MBRs of the objects are divided into k

groups, each assigned to one cluster center. For each MBR
assigned to a cluster center, its center position is randomly
chosen from all the positions within a distance of 100√

k
from

the cluster center. In this way, each object assigned to a
cluster is likely to be closer to the center of its cluster than
to those of any other clusters, hence producing some natural
cluster patterns.

During clustering, expected distances are computed
based on discrete sample points of the pdfs. Therefore, the
pdf of an object is specified by the probabilities at a finite
number of discrete sample points in its MBR. For each ob-
ject, we divide its MBR into a

√
s×

√
s grid, where s is the

number of samples used to approximate the pdf. A proba-
bility is randomly generated for each cell of the grid. The
cell probabilities are then normalized so that they sum to 1.

In our experiments we study how the following factors
affect the algorithm’s performance, namely, n: the number
of objects to be clustered; k: the number of clusters; d: the

maximum length of a side of an MBR; and s: the number
of sample points used in representing an object’s pdf. Ta-
ble 6.1 shows the baseline setting of these parameters. In
the experiments, we perform sensitivity study on these pa-
rameters, varying the value of one parameter at a time.

For datasets without cluster patterns, the initial cluster
representatives are picked uniformly from the 2D space. For
datasets with cluster patterns, the initial cluster representa-
tives are set as the centers of mass of some randomly chosen
objects.

For each set of parameter values, the clustering process
is executed 50 times and the average result is reported. We
compare NED of the brute-force UK-means algorithm, the
basic min-max-dist pruning algorithm, and various combi-
nations of our four pruning strategies.

All our codes are written in Java 1.5. The experiments
are run on Windows machines with an Intel 3.2GHz Pen-
tium 4 processor and 1024MB of memory.

6.2. Results

We first investigate the effectiveness of the pruning
methods with different dataset sizes (n). Figure 4 shows
NED under different strategies as n varies from 1,000 to
30,000 objects. The data objects in this experiment are gen-
erated without cluster patterns.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10000 20000 30000
n

A
ve

ra
ge

 n
um

be
r o

f e
xp

ec
te

d
di

st
an

ce
ca

lc
ul

at
io

ns

min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

ALL (9pts, precomp.
excluded)

Figure 4. NED vs. n.

In the figure, “ALL” refers to the use of all four pruning
methods, and the bracketed number refers to the number
of anchor points used in Upre and Lpre . The nine-point
scheme was used by default if not otherwise specified. All
curves that involve Upre or Lpre except the one labeled “All
(9pts, precomp. excluded)” include the overhead of pre-
computing the expected distances for the anchor points.

Recall that k = 49 in this experiment (baseline setting,
see Table 6.1). Therefore, the brute-force UK-means algo-
rithm computes 49 expected distances per object per iter-
ation. From Figure 4, we see that min-max-dist pruning

reduces NED to slightly less than 1.4, i.e., about 97% of the
expected distance computations are pruned.

Using 9-point pre-computation for UpreLpre (the ‘�’
line) further improves the effectiveness of min-max-dist
pruning by a factor of 2 when n is large. Method UcsLcs

(the ‘4’ line), which uses bounds based on the cluster-
representative-shift triangle inequality, gives the best per-
formance. In terms of pruning effectiveness, the figure
shows that UcsLcs is 4.5 to 12 times more effective than
the basic min-max-dist pruning. For example, when n =
20, 000, NED is only 0.12. Algorithms that use all four
pruning methods (the “ALL” curves) perform better than
UpreLpre , but are seen to be less effective than UcsLcs .
This is mainly due to the pre-computation overheads. Com-
paring the three “ALL” curves, we see that the saving made
by the use of more anchor points cannot compensate for
the extra overhead induced. On the other hand, if the pre-
computations are discounted from the cost model such as
for those cases in which the pre-computed anchor point
expected distances are reused over and over again across
multiple clustering exercises, then the combination of all 4
methods (the ‘+’ line) gives the most effective pruning. As
shown in Figure 4, the pruning effectiveness is about 11 to
24 times better than basic min-max-dist. This leads to a
very significant performance improvement over all others.
Finally, we have also tried more than nine anchor points,
but they did not give any significant further improvement.
The results are thus not shown in the graph.

From Figure 4, we see that the four methods become
more effective (i.e., their values of NED become smaller) as
n, the number of objects, increases. We note that with more
objects, the number of iterations executed by the algorithms
becomes larger before the clusters stabilize. A higher num-
ber of iterations favors Upre and Lpre due to the amortiza-
tion of the pre-computation overheads. It also favors Ucs

and Lcs since the cluster representatives move only mildly
in later iterations of the algorithm.

To further illustrate this point, we analyze the number
of expected distance calculations performed in each iter-
ation of a clustering process. Figure 5a shows a typical
breakdown of the expected distance calculations across it-
erations for a dataset with 1,000 objects. The figure shows,
for example, that using all 4 pruning methods with 5 anchor
points, the algorithm computes an average of 0.8 expected
distances per object during iteration 1. From Figure 5, we
see that the number of expected distance calculated by ba-
sic min-max-dist and UpreLpre stay relatively stable across
the iterations. This number, however, drops rapidly across
iterations when Ucs and Lcs are used. During the late itera-
tions, cluster representatives shift only slightly and UcsLcs

registers a very significant pruning result.
We further study the behavior of each of the four pruning

methods individually. The results are shown in Figure 5b.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12
Iteration

N
um

be
r o

f e
xp

ec
te

d
di

st
an

ce
ca

lc
ul

at
io

ns
 p

er
 o

bj
ec

t
min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12
Iteration

N
um

be
r o

f e
xp

ec
te

d
di

st
an

ce
ca

lc
ul

at
io

ns
 p

er
 o

bj
ec

t

min-max-dist
only

Upre

Lpre

Ucs

Lcs

(b)

Figure 5. Number of expected distance calcu-
lations in each iteration number (n = 1,000).

From the figure, we see that Lpre offers only slightly bet-
ter pruning than basic min-max-dist. Also, among the four
pruning methods, when applied alone, Upre is the most ef-
fective. The lower bound estimated by Inequality 3 is there-
fore not much tighter than the minimum distance from an
object’s MBR to a cluster representative (see Figure 1).
Comparing the curve for Upre in Figure 5(b) to that for
UpreLpre in Figure 5(a), we see that adding the pruning
method Lpre to Upre achieves only a small gain. The ef-
fect of Lpre and Upre is somewhat additive to each other.

Methods Ucs and Lcs , however, are synergetic to each
other. From Figure 5(b), we see that Ucs and Lcs achieve
similar pruning effectiveness. However, when combined,
they achieve a tremendous pruning effectiveness. This is
especially so towards the later iterations. The synergetic ef-
fect of Ucs and Lcs indicates that we need good estimations
for both an upper bound and a lower bound when we apply
the cluster shift method. On the other hand, for the pre-
computation method, an accurate upper bound estimation is
more important.

We have also studied the effectiveness of the pruning
methods when the objects exhibit intrinsic cluster patterns.

Figure 6 shows the results. Comparing Figure 6 and Fig-
ure 4, we observe that the general trends of the curves re-
main the same as in the case when data are generated with-
out cluster patterns. We note that NED values are generally
smaller in Figure 6 than those in Figure 4. This is because
if data objects follow certain cluster patterns, then objects
tend to get drawn towards their respective clusters. As a
consequence, there will be fewer objects that are “close” to
multiple cluster representatives. It is thus easier to prune ir-
relevant representatives. Pruning effectiveness is therefore
slightly higher.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10000 20000 30000
n

A
ve

ra
ge

 n
um

be
r o

f e
xp

ec
te

d
di

st
an

ce
ca

lc
ul

at
io

ns

min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

ALL (9pts, precomp.
excluded)

Figure 6. NED vs. n (on data with cluster pat-
terns).

Our next experiment studies the effectiveness of the
pruning methods when the number of clusters (k) varies
from 9 to 81. Figure 7 shows the results when 20,000 ob-
jects are clustered. Since the number of expected distance
calculations should increase with k, instead of reporting the
absolute number of calculations, we report the values as a
percentage of the number required by the brute-force UK-
means algorithm.

0

1

2

3

4

5

6

0 20 40 60 80
k

A
ve

ra
ge

 n
um

be
r o

f e
xp

ec
te

d
di

st
an

ce
ca

lc
ul

at
io

ns
 (p

er
ce

nt
ag

e
of

 th
e

br
ut

e-
fo

rc
e

ap
pr

oa
ch

)

min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

ALL (9pts, precomp.
excluded)

Figure 7. Average number of expected dis-
tance calculations vs. k.

From the figure, again we see that the four pruning meth-
ods significantly outperform basic min-max-dist pruning. In
general, a larger k gives a more effective pruning (relative
to the brute-force UK-means algorithm). This is because
with more clusters, there are simply more candidates to be
pruned. Method UpreLpre again is about twice as effec-
tive as the basic min-max-dist pruning. Also, without the
pre-computation overheads, UcsLcs continues to be the best
strategy. If overheads are discounted, then using all 4 prun-
ing methods gives a very impressive pruning effectiveness.
The ratios between the min-max-dist curve and each of the
other curves remain virtually constant for most values of k,
except when k is very small. This is because under small k,
the overhead of Upre and Lpre becomes relatively signifi-
cant. Overall, the figure shows that the pruning methods are
extremely effective over a broad range of values of k.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20
d

A
ve

ra
ge

 n
um

be
r o

f e
xp

ec
te

d
di

st
an

ce
ca

lc
ul

at
io

ns

min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

ALL (9pts, precomp.
excluded)

Figure 8. NED vs. d.

The next experiment studies the effect of d, the maxi-
mum length of an MBR’s edge. Figure 8 shows how NED

changes as d varies from 1 to 20 units. From the figure,
we see that all curves rise with d. This is because a larger
d gives larger uncertainty regions of objects, which leads
to more data uncertainty. As we have explained through
the illustration shown in Figure 1, a bigger bounding box
results in less effective pruning, which is reflected by the
curves in Figure 8. An interesting observation from the fig-
ure is that when d is very small, Upre and Lpre are not
more effective than the basic min-max-dist pruning algo-
rithm. This is because with a very small MBR, an expected
distance estimated using an anchor point is not much differ-
ent from those estimated using the minimum and maximum
distances to the MBR. In comparison, Ucs and Lcs are rela-
tively more effective. Except for extremely small values of
d, all combinations of the four pruning methods are highly
effective and they provide substantial improvement to the
basic min-max-dist pruning.

Finally we study the relationship between the actual run-
ning time and the number of sample points s used to rep-
resent the pdf of an object. Recall that a larger s implies

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000 1200
s

C
lu

st
er

in
g

tim
e

(s
ec

on
ds

)

min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

ALL (9pts, precomp.
excluded)
Brute-force

(a) including brute-force UK-means.

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000
s

C
lu

st
er

in
g

tim
e

(s
ec

on
ds

)

min-max-dist only

UpreLpre

UcsLcs

ALL (9pts)

ALL (5pts)

ALL (1pt)

ALL (9pts, precomp.
excluded)

(b) pruning methods only.

Figure 9. Time vs. s.

a more expensive expected distance calculation. So, for
large s values, we expect that the more effective is a prun-
ing method, the faster is the algorithm. We use a dataset
with 10,000 objects without cluster patterns for this study.
We vary s from 196 to 1,225. The average results of 10
clustering runs are shown in Figure 9.

Figure 9a compares the execution times of all ap-
proaches, including that of the brute-force UK-means al-
gorithm (which does not perform any pruning). It is clear
that for all values of s, a substantial amount of time is saved
by the pruning methods. Even for the smallest value of s
(196), applying any kinds of pruning still reduces the run-
ning time by at least a factor of ten. We remark that in
practice, s should be much larger than what we have shown
in the graph (such as in the order of 104−105) such that the
pdf’s are accurately represented. Hence, brute-force UK-
means is not feasible computationally.

Figure 9b shows only the curves that involve pruning.
From the figure, we see that all curves go up with s. This
is because a larger s implies a higher computational cost
in calculating an expected distance. Among all the curves,
min-max-dist pruning rises most rapidly with s. This is
because min-max-dist is the least effective in pruning and
therefore it is the most sensitive to s. If s is extremely

small (e.g., 196), computing expected distances are not that
expensive and min-max-dist performs very well. The pre-
computation-based methods give no performance gain due
to the various overheads involved. Therefore using all four
pruning methods does not run faster than using basic min-
max-dist pruning only. Yet, UcsLcs and ALL(1pt) are still
amongst the best strategies, as they save expected distance
calculations while not introducing too much computational
overhead.

When s is moderate (e.g., 3,025), the cost of expected
distance computation is major and it dominates the algo-
rithms’ execution times. The basic min-max-dist pruning
method is outperformed by any combination of the four
pruning methods. The relative performance of the different
methods now follow almost the same trend as that shown in
Figure 4.

7. Concluding remarks

In this paper we studied the problem of clustering un-
certain objects with the uncertainty regions defined by pdfs.
For an accurate representation, at least thousands of sam-
ple points should be used to approximate an object’s pdf.
When applying the UK-means algorithm to cluster uncer-
tain objects, a large number of expected distances have to
be calculated. We explained why expected distance com-
putations are expensive and thus argued that effective prun-
ing techniques are necessary for a computationally feasible
clustering algorithm.

We described the basic min-max-dist pruning method
and showed that it was fairly effective in pruning expected
distance computations. To further improve performance,
we derived four bound-estimation methods. We conducted
extensive experimental study evaluating those four pruning
methods. Our results showed that Ucs and Lcs are very
effective, especially when they work together. In some
experiment setting, UcsLcs was a dozen times more ef-
fective than basic min-max-dist in terms of pruning ef-
fectiveness. Method UpreLpre , which is based on pre-
computation of anchor points’ expected distances, also per-
formed very well. The pre-computation overheads, how-
ever, made UpreLpre second-best to Ucs and Lcs . The four
pruning methods are independent of each other and can be
combined to achieve an even higher pruning effectiveness.
Pruning is at its full-strength when all four are applied and if
the pre-computation overhead could be discounted. A fac-
tor of 24 times more effective in pruning than min-max-dist
was registered in some of the experiments.

References

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.
OPTICS: Ordering points to identify the clustering structure.

In Proc. of ACM SIGMOD Conference, 1999.
[2] M. Chau, R. Cheng, B. Kao, and J. Ng. Uncertain data

mining: An example in clustering location data. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining,
2005.

[3] R. Cheng, D. Kalashnikov, and S. Prabhakar. Querying im-
precise data in moving object environments. IEEE TKDE,
16(9):1112–1127, 2004.

[4] R. Cheng, X. Xia, S. Prabhakar, R. Shah, and J. Vitter. Ef-
ficient indexing methods for probabilistic threshold queries
over uncertain data. In Proc. of VLDB Conference, 2004.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood for incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B, 39:1–38, 1977.

[6] J. C. Dunn. A fuzzy relative of the ISODATA process and
its use in detecting compact well-separated clusters. Journal
of Cybernetics, 3:32–57, 1973.

[7] C. Elkan. Using the triangle inequality to accelerate k-
means. In Proc. of ICML Conference, 2003.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proc. of ACM SIGKDD Confer-
ence, 1996.

[9] H. Hamdan and G. Govaert. Mixture model clustering of
uncertain data. In Proc. of IEEE ICFS Conference, pages
879–884, 2005.

[10] E. Hung, L. Getoor, and V. S. Subrahmanian. PXML: A
probabilistic semistructured data model and algebra. In
Proc. of IEEE ICDE Conference, 2003.

[11] M. Ichino and H. Yaguchi. Generalized minkowski met-
rics for mixed feature type data analysis. IEEE TSMC,
24(4):698V–708, 1994.

[12] H.-P. Kriegel and M. Pfeifle. Density-based clustering of
uncertain data. In Proc. of ACM SIGKDD Conference, 2005.

[13] H.-P. Kriegel and M. Pfeifle. Hierarchical density-based
clustering of uncertain data. In Proc. of IEEE ICDM Con-
ference, 2005.

[14] J. B. MacQueen. Some methods for classification and analy-
sis of multivariate observations. In 5th Berkeley Symposium
on Mathematical Statistics and Probability, 1967.

[15] M. Nanni. Speeding-up hierarchical agglomerative cluster-
ing in presence of expensive metrics. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages
378–387, 2005.

[16] N. D. Nilesh and D. Suciu. Efficient query evaluation on
probabilistic databases. In Proc. of VLDB Conference, pages
864–875, 2004.

[17] E. H. Ruspini. A new approach to clustering. Information
Control, 15(1):22–32, 1969.

[18] M. Sato, Y. Sato, and L. Jain. Fuzzy Clustering Models and
Applications. Physica-Verlag, Heidelberg, 1997.

[19] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and querying databases that track mobile units. Dis-
tributed and Parallel Databases, 7(3), 1999.

